首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   3篇
  国内免费   2篇
测绘学   1篇
大气科学   7篇
地球物理   46篇
地质学   67篇
海洋学   53篇
天文学   40篇
自然地理   27篇
  2022年   2篇
  2019年   3篇
  2018年   8篇
  2017年   8篇
  2016年   6篇
  2015年   5篇
  2014年   8篇
  2013年   8篇
  2012年   2篇
  2011年   9篇
  2010年   3篇
  2009年   9篇
  2008年   8篇
  2007年   3篇
  2006年   9篇
  2005年   6篇
  2004年   12篇
  2003年   11篇
  2002年   9篇
  2001年   8篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   7篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   7篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   8篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   7篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有241条查询结果,搜索用时 15 毫秒
11.
12.
The first sign of magma accumulating beneath Miyakejima, an island volcano in the northern Izu islands, Japan, came at around 18:00 on 26 June 2000, when a swarm of earthquakes was detected by a volcano seismic network on the island. Earthquakes occurred initially beneath the southwest flank near the summit and gradually migrated west of the island, where a submarine eruption occurred the next morning. Earthquakes then migrated further to the northwest between Miyakejima and Kozushima, another volcanic island and developed to the most intense earthquake swarm ever observed in and around Japanese archipelago. To better image how the initial magma intrusion occurred, we relocated hypocenters by using a station-correction method and a double-difference method. The relocated epicenters are generally concentrated near the upper bound of dyke intrusions inferred from geodetic studies throughout the initial stages of the 2000 eruption at Miyakejima from 26 to 27 June 2000. As for seismic activity westward off Miyakejima in the morning on 27 June, hypocenters from both a nationwide seismic network that were relocated by the double-difference method, and those from the volcano seismic network relocated by the station-correction method, formed a very shallow cluster that ascended slowly with time as it propagated northwestward from Miyakejima. This suggests that the dykes have both a radial and upward component of movement.Editorial responsibility: S. Nakada, T. Druitt  相似文献   
13.
14.
15.
Synthetic (Mg0.51, Mn0.49)2SiO4 olivine samples are heat-treated at three different pressures; 0, 8 and 12 GPa, all at the same temperature (~500° C). X-ray structure analyses on these single crystals are made in order to see the pressure effect on cation distribution. The intersite distribution coefficient of Mg and Mn in M1 and M2 sites, K D = (Mn/Mg) M1/(Mn/Mg) M2, of these samples are 0.192 (0 GPa), 0.246 (8 GPa) and 0.281 (12 GPa), indicating cationic disordering with pressure. The small differences of cell dimensions between these samples are determined by powder X-ray diffraction. Cell dimensions b and c decrease, whereas a increases with pressure of equilibration. Cell volume decreases with pressure as a result of a large contraction of the b cell dimension. The effect of pressure on the free energy of the cation exchange reaction is evaluated by the observed relation between the cell volume and the site occupancy numbers. The magnitude of the pressure effect on cation distribution is only a fifth of that predicted from the observed change in volume combined with thermodynamic theory. This phenomenon is attributed to nonideality in this solid solution, and nonideal parameters are required to describe cation distribution determined in the present and previous experiments. We use a five-parameter equation to specify the cationic equilibrium on the basic of thermodynamic theory. It includes one energy parameter of ideal mixing, two parameters for nonideal effects, one volume parameter, and one thermal parameter originated from the lattice vibrational energy. The present data combined with some of the existing data are used to determine the five parameters, and the cation distribution in Mg-Mn olivine is described as a function of temperature, pressure, and composition. The basic framework of describing the cationic behavior in olivine-type mineral is worked out, although the result is preliminary: each of the determined parameters is not accurate enough to enable us to make a reliable prediction.  相似文献   
16.
Antiphase domains (APD's) of pigeonite lamellae in natural and heated augite crystals from the Hakonetoge andesite have been examined by a transmission electron microscope (TEM). Antiphase boundaries (APB's) of the pigeonite lamellae in natural specimens have a sigmoidal shape cutting the c axis in (010) sections. APB's in specimens heated at temperatures above the high-low inversion and then quenched are nearly parallel to the c axis with almost straight boundaries. These observations indicate that the preferred orientation of APB's in (010) sections depends on cooling rate; at fast colling rates the APB's are nearly parallel to the c axis, whereas at slower cooling rates they are inclined to the c axis. The cooling rate of the natural augite specimen from Hakonetoge is estimated to be about 0.01 °C/h from the experimentally determined time-temperature-transformation (TTT) diagram for the APB orientations. APD sizes are large in specimens quenched from above the inversion temperature; they are at a minimum after cooling rates of around 1–0.1 °C/h, and then become larger with slower cooling rates.  相似文献   
17.
18.
In an attempt to detect streaming potentials induced by subsurface water flows, we have observed the horizontal electric field (self-potential) variations across stationary electric dipoles near geothermal wells in the Takinoue geothermal area, Japan. We observed variations of self-potential which seem to be associated with the water flows in the aquifer, induced by turning on and off the flow of the wells. Amplitudes of the variations are 3–5 mV across 60–200 m dipoles, and can be explained well with a proposed electrokinetic model: the streaming potential coefficient of − 15 mV/bar and/or the ζ-potential of −50 to −100 mV in the aquifer are appropriate to explain the observed data by the model. The obtained electrokinetic coupling coefficients are in situ ones and determined for crustal rock-water system under high temperature (˜200°C) condition. The present results, together with a laboratory study by Ishido and Mizutani (1981), give fundamental information on electrokinetic coupling coefficients in the earth's interior, and are very important when we make quantitative interpretations of self-potentials generated by geothermal activity on the basis of electrokinetic effects.  相似文献   
19.
GPS radio occultation (RO) signals are highly coherent and precise, and thus sufficient for holographic investigation of the atmosphere, ionosphere, and the Earth's surface from space. In principle, three-dimensional radio-holographic remote sensing is possible by using new radio holographic equations to retrieve the radio field within the atmosphere from a radio field known at some interface outside the atmosphere. A simplified two-dimensional form of the radio-holographic equations which are developed under an assumption of local spherical symmetry can be used to obtain two-dimensional radio images of the atmosphere and terrestrial surface. To achieve this, radio holograms recorded by a GPS receiver onboard a low earth orbit (LEO) satellite at two GPS frequencies can be used and focused synthetic aperture principle applied. Analysis of GPS/MET RO data is presented to show the effectiveness of a radio-holographic approach. It is shown that the amplitude of GPS radio signals (in addition to phase data) can be used to obtain detailed altitude profiles of the vertical gradient of refractivity in the atmosphere and electron density in the mesosphere. The results demonstrate the applicability of GPS radio holography for a detailed global study of the natural processes in the atmosphere and mesosphere. Electronic Publication  相似文献   
20.
Abstract The 1995 Kobe (Hyogo-ken Nanbu) earthquake (MJMA 7.2, Mw 6.9) occurred on Jan. 17, 1995, at a depth of 17 km, beneath the areas of southern part of Hyogo prefecture and Awaji Island. To investigate P-wave velocity distribution and seismological characteristics in the aftershock area of this great earthquake, a wide-angle and refraction seismic exploration was carried out by the Research Group for Explosion Seismology (RGES) . The profile including 6 shot points and 205 observations was 135 km in length, extending from Keihoku, Northern Kyoto prefecture, through Kobe, to Seidan on Awaji Island. The charge of each shot was 350–700 kg. The P-wave velocity structure model showed a complicated sedimentary layer which is shallower than 2.5 km, a 2.5 km-thick basement layer whose velocity is 5.5 km/s, overlying the crystalline upper crust, and the boundary between the upper and lower crust.
Almost all aftershock hypocenters were located in the upper crust. However, the structure model suggests that the hypocenters of the main shock and some aftershock clusters were situated deeper than the boundary between the upper and lower crust. We found that the P-velocity in the upper crust beneath the northern part of Awaji Island is 5.64 km/s which is 3% lower than that of the surrounding area. The low-velocity zone coincides with the region where the high stress moment release was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号