首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   4篇
  国内免费   3篇
大气科学   3篇
地球物理   12篇
地质学   19篇
海洋学   2篇
天文学   6篇
自然地理   6篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  1995年   1篇
排序方式: 共有48条查询结果,搜索用时 828 毫秒
41.
We conducted a field experiment to assess the response of phytal harpacticoids to nutrient‐driven increases of epiphyte load in Posidonia oceanica meadows. First, we evaluated differences in species richness, diversity and assemblage structure of phytal harpacticoids in P. oceanica meadows with differing epiphyte loads. Secondly, we conducted a field experiment where epiphyte load was increased through an in situ addition of nutrients to the water column and evaluated the responses of the harpacticoid assemblages. We predicted that there would be changes in the harpacticoid assemblages as a result of nutrient‐driven increases of epiphyte load, and that these changes would be of a larger magnitude in meadows of low epiphyte load. Our results show that the harpacticoid fauna (>500 μm) present in P. oceanica meadows in the Bay of Palma comprised taxa which are considered phytal and other less abundant ones previously described as sediment dwellers or commensal on other invertebrate species. Nutrient addition had an overall significant effect on epiphyte biomass and on harpacticoid abundance, diversity and assemblage structure, possibly as a response to the increased resources and habitat complexity provided by epiphytes. The abundance of dominant species at each location was favoured by nutrient addition and in some cases correlated with epiphytic biomass, although never strongly. This may indicate that structural complexity or diversity of the epiphytic cover might be more important than the actual epiphytic biomass for the harpacticoid species investigated. More species‐specific studies are necessary to ascertain this and clarify the relationships between harpacticoids and epiphytes in seagrass meadows. To our knowledge, this is the first account of harpacticoid species associated with P. oceanica leaves and the epiphytic community they harbour in the Mediterranean Sea.  相似文献   
42.
The debris flow of 28 August 1997 which occurred in the Riale Buffaga, a torrent channel in the territory of the village of Ronco s./Ascona (Ticino, Switzerland), has been simulated with a good degree of reliability due to the existence of morphologic surveys of the torrent channel preceding the flood event and the presence of a rain gauge that registered the rainfall event at a resolution of 10 minutes. With these data it is possible to conduct a quantitative analysis of the effect of a forest fire on the hydrogeological response of a given catchment. In the case at hand, a 10‐year rainfall event caused a 100‐ to 200‐year flood event. This result clearly quantifies the possible consequences of a forest fire in terms of territorial safety. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
43.
The palaeoenvironment of the Karelian Isthmus area during the Litorina Sea stage of the Baltic Sea history, between 8.0 and 4.5 kyr BP (8.8-5.2 cal. kyr BP), was reconstructed by studying four sites located on the Karelian Isthmus in Russia. Methods included diatom and pollen analyses, sediment lithostratigraphical interpretation and 14C dating. The brackish-water (Litorina) transgression began c. 7.7 kyr BP (8.45 cal. kyr BP) in the Karelian Isthmus area. The transgression maximum occurred between 6.7 and 5.7 kyr BP (7.6-6.5 cal. kyr BP), depending on the glacio-isostatic land uplift rate. Regarding the vegetation, the maximum occurrence of temperate deciduous trees took place at the same time. The transgression was interrupted by a short-lived sea-level standstill during the middle phase of the main transgression, c. 6.3 kyr BP (7.2 cal. kyr BP), on the eastern part of the isthmus. The highest Litorina shoreline is located between 8 and 13 m above present sea-level and the amplitude of the Litorina transgression has varied between 5 and 7 m. The 8.2-kyr cold event is not evident, but the sea-level standstill around 6.3 kyr BP (7.2 cal. kyr BP) could reflect a cool episode at that time in the Karelian Isthmus area.  相似文献   
44.
Most ion irradiation experiments relevant to primitive outer Solar System objects have been performed on ice and silicate targets. Here we present the first ion irradiation experiments performed on natural complex hydrocarbons (asphaltite and kerite). These materials are very dark in the visible and have red-sloped spectra in the visible and near-infrared. They may be comparable in composition and structure to refractory organic solids on the surfaces of primitive outer Solar System objects. We irradiated the samples with 15-400 keV H+, N+, Ar++, and He+ ions and measured their reflectance spectra in the range of 0.3-2.5 μm before ion implantation and after each irradiation step. The results show that irradiation-induced carbonization gradually neutralizes the spectral slopes of these red organic solids. This implies a similar space weathering trend for the surfaces of airless bodies optically dominated by spectrally red organic components. The reduction of spectral slope was observed in all experiments. Irradiation with 30 keV protons, which transfers energy to the target mostly via electronic (inelastic) collisions, showed lower efficiency than the heavier ions. We found that spectral alteration in our experiments increased with increasing contribution of nuclear versus electronic energy loss. This implies that nuclear (elastic) energy deposition plays an important role in changing the optical properties of irradiated refractory complex hydrocarbon materials. Finally, our results indicated that temperature variations from 40 K to room temperature did not influence the spectral properties of these complex hydrocarbon solids.  相似文献   
45.
A biocide decay model was developed to assess the potential efficacy and environmental impacts associated with using glutaraldehyde to treat unballasted overseas vessels trading on the Laurentian Great Lakes. The results of Monte Carlo simulations indicate that effective glutaraldehyde concentrations can be maintained for the duration of a vessel's oceanic transit (approximately 9-12 days): During this transit, glutaraldehyde concentrations were predicted to decrease by approximately 10% from initial treatment levels (e.g., 500 mgL(-1)). In terms of environmental impacts, mean glutaraldehyde concentrations released at Duluth-Superior Harbor, MN were predicted to be 100-fold lower than initial treatment concentrations, and ranged from 3.2 mgL(-1) (2 SD: 2.74) in April to 0.7 mgL(-1) (2 SD: 1.28) in August. Sensitivity analyses indicated that the re-ballasting dilution factor was the major variable governing final glutaraldehyde concentrations; however, lake surface temperatures became increasingly important during the warmer summer months.  相似文献   
46.
Climate impacts on coastal and estuarine systems take many forms and are dependent on the local conditions, including those set by humans. We use a biocomplexity framework to provide a perspective of the consequences of climate change for coastal wetland ecogeomorphology. We concentrate on three dimensions of climate change affects on ecogeomorphology: sea level rise, changes in storm frequency and intensity, and changes in freshwater, sediment, and nutrient inputs. While sea level rise, storms, sedimentation, and changing freshwater input can directly impact coastal and estuarine wetlands, biological processes can modify these physical impacts. Geomorphological changes to coastal and estuarine ecosystems can induce complex outcomes for the biota that are not themselves intuitively obvious because they are mediated by networks of biological interactions. Human impacts on wetlands occur at all scales. At the global scale, humans are altering climate at rapid rates compared to the historical and recent geological record. Climate change can disrupt ecological systems if it occurs at characteristic time scales shorter than ecological system response and causes alterations in ecological function that foster changes in structure or alter functional interactions. Many coastal wetlands can adjust to predicted climate change, but human impacts, in combination with climate change, will significantly affect coastal wetland ecosystems. Management for climate change must strike a balance between that which allows pulsing of materials and energy to the ecosystems and promotes ecosystem goods and services, while protecting human structures and activities. Science-based management depends on a multi-scale understanding of these biocomplex wetland systems. Causation is often associated with multiple factors, considerable variability, feedbacks, and interferences. The impacts of climate change can be detected through monitoring and assessment of historical or geological records. Attribution can be inferred through these in conjunction with experimentation and modeling. A significant challenge to allow wise management of coastal wetlands is to develop observing systems that act at appropriate scales to detect global climate change and its effects in the context of the various local and smaller scale effects.  相似文献   
47.
Post-fire debris flows represent one of the most erosive consequences associated with increasing wildfire severity and investigations into their downstream impacts have been limited. Recent advances have linked existing hydrogeomorphic models to predict potential impacts of post-fire erosion at watershed scales on downstream water resources. Here we address two key limitations in current models: (1) accurate predictions of post-fire debris flow volumes in the absence of triggering storm rainfall intensities and (2) understanding controls on grain sizes produced by post-fire debris flows. We compiled and analysed a novel dataset of depositional volumes and grain size distributions (GSDs) for 59 post-fire debris flows across the Intermountain West (IMW) collected via fieldwork and from the literature. We first evaluated the utility of existing models for post-fire debris flow volume prediction, which were largely developed for Southern California. We then constructed a new post-fire debris flow volume prediction model for the IMW using a combination of Random Forest modelling and regression analysis. We found topography and burn severity to be important variables, and that the percentage of pre-fire soil organic matter was an essential predictor variable. Our model was also capable of predicting debris flow volumes without data for the triggering storm, suggesting that rainfall may be more important as a presence/absence predictor, rather than a scaling variable. We also constructed the first models that predict the median, 16th percentile, and 84th percentile grain sizes, as well as boulder size, produced by post-fire debris flows. These models demonstrate consistent landscape controls on debris flow GSDs that are related to land cover, physical and chemical weathering, and hillslope sediment transport processes. This work advances our ability to predict how post-fire sediment pulses are transported through watersheds. Our models allow for improved pre- and post-fire risk assessments across diverse ranges of watersheds in the IMW.  相似文献   
48.
The majority of shore platforms form in rocks that are characterised by layered stratigraphy and pervasive jointing. Plucking of weathered, joint and bed bounded blocks is an important erosion process that existing models of platform development do not represent. Globally, measuring platform erosion rates have focused on microscale (< 1 mm) surface lowering rather than mesoscale (0.1-1 m) block detachment, yet the latter appears to dominate the morphological development of discontinuity rich platforms. Given the sporadic nature of block detachment on platforms, observations of erosion from storm event to multi-decadal timescales (and beyond) are required to quantify shore platform erosion rates. To this end, we collected aerial photography using an unmanned aerial vehicle to produce structure-from-motion-derived digital elevation models and orthophotos. These were combined with historical aerial photographs to characterise and quantify the erosion of two actively eroding stratigraphic layers on a shore platform in Glamorgan, south Wales, UK, over 78-years. We find that volumetric erosion rates vary over two orders of magnitude (0.1-10 m3 yr-1) and do not scale with the length of the record. Average rates over the full 78-year record are 2-5 m3 yr-1. These rates are equivalent to 1.2-5.3 mm yr-1 surface lowering rates, an order of magnitude faster than previously published, both at our site and around the world in similar rock types. We show that meso-scale platform erosion via block detachment processes is a dominant erosion process on shore platforms across seasonal to multi-decadal timescales that have been hitherto under-investigated. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号