首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   5篇
  国内免费   4篇
测绘学   5篇
大气科学   19篇
地球物理   64篇
地质学   76篇
海洋学   19篇
天文学   13篇
综合类   1篇
自然地理   19篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   7篇
  2017年   10篇
  2016年   9篇
  2015年   5篇
  2014年   4篇
  2013年   15篇
  2012年   7篇
  2011年   15篇
  2010年   10篇
  2009年   9篇
  2008年   7篇
  2007年   10篇
  2006年   5篇
  2005年   6篇
  2004年   7篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1980年   5篇
  1979年   6篇
  1977年   4篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1970年   2篇
  1968年   1篇
  1967年   1篇
  1960年   1篇
  1944年   1篇
  1942年   1篇
  1940年   2篇
  1939年   2篇
  1938年   1篇
  1926年   1篇
排序方式: 共有216条查询结果,搜索用时 31 毫秒
191.
Book Review     
  相似文献   
192.
The aim of the atmospheric nitrogen inputs into the coastal ecosystem (ANICE) project is to improve transport–chemistry models that estimate nitrogen deposition to the sea. To achieve this, experimental and modelling work is being conducted which aims to improve understanding of the processes involved in the chemical transformation, transport and deposition of atmospheric nitrogen compounds. Of particular emphasis within ANICE is the influence of coastal zone processes. Both short episodes with high deposition and chronic nitrogen inputs are considered in the project. The improved transport–chemistry models will be used to assess the atmospheric inputs of nitrogen compounds into the European regional seas (the North Sea is studied as a prototype) and evaluate the impact of various emission reduction strategies on the atmospheric nitrogen loads. Assessment of the impact of atmospheric nitrogen on coastal ecosystems will be based on comparisons of phytoplankton nitrogen requirements, other external nitrogen inputs to the ANICE area of interest and the direct nitrogen fluxes provided by ANICE. Selected results from both the experimental and modelling components are presented here. The experimental results show the large spatial and temporal variability in the concentrations of gaseous nitrogen compounds, and their influences on fluxes. Model calculations show the strong variation of both concentrations and gradients of nitric acid at fetches of up to 25 km. Aerosol concentrations also show high temporal variability and experimental evidence for the reaction between nitric acid and sea salt aerosol is provided by size-segregated aerosol composition measured at both sides of the North Sea. In several occasions throughout the experimental period, air mass back trajectory analysis showed connected flow between the two sampling sites (the Weybourne Atmospheric Observatory on the North Norfolk coast of the UK and Meetpost Noordwijk, a research tower at 9 km off the Dutch coast). Results from the METRAS/SEMA mesoscale chemistry transport model system for one of these cases are presented. Measurements of aerosol and rain chemical composition, using equipment mounted on a commercial ferry, show variations in composition across the North Sea. These measurements have been compared to results obtained with the transport–chemistry model ACDEP which calculates the atmospheric inputs into the whole North Sea area. Finally, the results will be made available for the assessment of the impact of atmospheric nitrogen on coastal ecosystems.  相似文献   
193.
An exact model to describe submesoscale, coherent vortices in a uniformly stratified fluid is presented. The model allows for stratification of the eddy interior, so as to agree with observations. The closed set of equations governing the evolution of the eddy on the F-plane is derived. In the case that the interior isopycnal surfaces remain horizontal the stratified analogue of the ‘rodon’, a special solution of the ‘lens equations’ that govern the evolution of uniform-density, warm-core surface eddies, is obtained.  相似文献   
194.
This study shows that the use of the first-order additional components of the ray method in the seismic wave field modeling is easy and that it can bring a substantial improvement of the standard ray results obtained with the zero-order ray approximation only. For the calculation of a first-order additional component, spatial derivatives of the parameters of the medium and spatial derivatives of the zero-order ray amplitude term are necessary. The evaluation of the former derivatives is straightforward; the latter derivatives can be calculated approximately from neighboring rays by substituting the derivatives by finite differences. This allows an effective calculation of the first-order additional terms in arbitrary laterally varying layered media.The importance of the first-order additional terms is demonstrated by the study of individual higher-order terms of the ray series representing elementaryP andS elastodynamic Green functions for a homogeneous isotropic medium. The study shows clearly that the consideration of the first-order additional terms leads to a more substantial decrease of the difference between approximate and exact elementary Green functions than any other higher-order term. With this in mind, effects of the first-order additional terms on the ray synthetic seismograms for aVSP configuration are studied. It is shown that the use of the additional terms leads to such phenomena, unknown in the zero-order approximation of the ray method, like quasi-elliptical and transverse polarization of a singleP wave or longitudinal polarization of a singleS wave.  相似文献   
195.
This paper presents an approach to estimating world-regional carbon mitigation cost functions for the years 2020, 2050, and 2100. The approach explicitly includes uncertainty surrounding such carbon reduction costs. It is based on the analysis of global energy-economy-environment scenarios described for the 21st century. We use one baseline scenario and variants thereof to estimate cumulative costs of carbon mitigation as a function of cumulative carbon emission reductions. For our baseline for estimating carbon mitigation cost curves, we use the so-called IIASA F scenario. The F scenario is a high-growth, high-emissions scenario designed specifically to be used as a reference against which to evaluate alternatives. Carbon emissions and energy systems costs in the F scenario are then compared with (reduced) emissions and (higher) costs (including macroeconomic adjustment costs) of alternative scenarios taken from the IIASA scenario database. As a kind of sensitivity analysis of our approach, we also present the results of a scenario involving assumptions on particularly rapid technological progress.  相似文献   
196.
The Gran Sasso range is a striking salient formed by two roughly rectilinear E–W and N–S limbs. In the past 90° counterclockwise (CCW) rotations from the eastern Gran Sasso were reported [Tectonophysics 215 (1992) 335], suggesting west–east increase of rotation-related northward shortening along the E–W limb. In this paper, we report on paleomagnetic data from Meso-Cenozoic sedimentary dykes and strata cropping out at Corno Grande (central part of the E–W Gran Sasso limb), the highest summit of the Apennine belt. Predominant northwestward paleomagnetic declinations (in the normal polarity state) from both sedimentary dykes and strata are observed. When compared to the expected declination values for the Adriatic foreland, our data document no thrusting-related rotation at Corno Grande. The overall paleomagnetic data set coupled with the available geological information shows that the Gran Sasso arc is in fact a composite structure, formed by an unrotated-low shortening western (E–W trending) limb and a strongly CCW rotated eastern salient. Late Messinian and post-early Pliocene shortening episodes documented along the Gran Sasso front indicate that belt building and arc formation occurred during two distinct episodes. We suggest that the southern part of a late Messinian N–S front was reactivated during early–middle Pliocene time, forming a tight range salient due to CCW rotations and differential along-front shortening rates. The formation of a northward displacing bulge in an overall NW–SE chain is likely a consequence of the collision between the Latium-Abruzzi and Apulian carbonate platforms during northeastward propagation of the Apennine wedge, inducing lateral northward extrusion of Latium-Abruzzi carbonates towards ductile basinal sediment areas.  相似文献   
197.
Nine LL-chondrites were studied by a selective etching technique, to characterize the noblegas components in three mineral fractions: HF-HCl-solubles (silicates, metal, troilite, etc.; comprising ~ 99% of the meteorite), chromite and carbon (~ 0.3–0.7%) and Q (a poorly characterized mineral defined by its solubility in HNO3, comprising ~ 0.05% of the meteorite but containing most of the Ar, Kr, Xe and a neon component of 20Ne22Ne = 10.9 ± 0.8). The 20Ne36Ar ratio in Q falls wi petrologic type and rising 36Ar content, as expected for condensation from a cooling solar nebula, but contrary to the trend expected for metamorphic losses. Chondrites of different petrologic types therefore cannot all be derived from the same volatile-rich ancestor, but must have formed over a range of temperatures, with correspondingly different intrinsic volatile contents.The CCFXe (carbonaceous chondrite fission) component varies systematically with petrologic type. The most primitive LL3s (Krymka, Bishunpur, Chainpur) contain substantial amounts of CCFXe in chromite-carbon, enriched relative to primordial Xe as shown by high 136Xe132Xe (0.359–0.459, vs 0.310 for primordial Xe). These are accompanied by He and by Ne with 20Ne22Ne ≈ 8.0 and by variable amounts of a xenon component enriched in the light isotopes. The chromite in these meteorites is compositionally peculiar, containing substantial amounts of Fe(III). These meteorites, as well as Parnallee (LL3) and Hamlet (LL4) also contain CCFXe in phase Q, heavily diluted by primordial Xe (136Xe132Xe = 0.317–0.329). On the other hand, LL5s and 6s (Olivenza, St. Séverin, Manbhoom and Dhurmsala) contain no CCFXe in either mineral. This deficiency must be intrinsic rather than caused by metamorphic loss, because Q in these meteorites still contains substantial amounts of primordial Ne.If CCFXe comes from a supernova, then its distribution in LL-chondrites requires three presolar carrier minerals of the right solubility properties, containing three different xenon components in certain combinations. These minerals must be appropriately distributed over the petrologic types, together with locally produced Q containing primordial gases, and they must be isotopically normal, in contrast to the gases they contain. On the other hand, if CCFXe comes from fission of a volatile superheavy element, then its decrease from LL3 to LL6 can be attributed to progressively less complete condensation from the solar nebula. Ad hoc assumptions must of the host phase Q, its association with ferrichromite and the origin of the associated xenon component enriched in the light isotopes.Soluble minerals in LL3s and LL4s contain a previously unobserved, solar xenon component, which, however, is not derived from the solar wind. Three types of ‘primordial’ xenon thus occur side-by-side in different minerals of the same meteorite: strongly fractionated Xe in ferrichromite and carbon, lightly fractionated Xe in phase Q, and ‘solar’ Xe in solubles. Because the first two can apparently be derived from the third by mass fractionation, it seems likely that all were trapped from the same solar nebula reservoir, but with different degrees of mass fractionation.  相似文献   
198.
199.
The paper presents the development of algorithms that have been implemented in a computer program used to simulate the performance of idealized granular systems composed of elliptical-shaped particles. The work is an extension of numerical simulation methods which have been successfully used in micromechanics research on disk-shaped or polygon-shaped particles by the authors and others. The simulation of elliptical-shaped particles offers the possibility to explore the influence of particle shape on the micromechanical behaviour of plane assemblies of particles and the stress-strain behaviour of these systems at the macro scale. Typical results of simulation runs are presented to illustrate the importance of particle shape on the macroscopic stress-strain response of plane systems.  相似文献   
200.
We use nearby K dwarf stars to measure the helium-to-metal enrichment ratio  Δ Y /Δ Z   , a diagnostic of the chemical history of the solar neighbourhood. Our sample of K dwarfs has homogeneously determined effective temperatures, bolometric luminosities and metallicities, allowing us to fit each star to the appropriate stellar isochrone and determine its helium content indirectly. We use a newly computed set of Padova isochrones which cover a wide range of helium and metal content.
Our theoretical isochrones have been checked against a congruous set of main-sequence binaries with accurately measured masses, to discuss and validate their range of applicability. We find that the stellar masses deduced from the isochrones are usually in excellent agreement with empirical measurements. Good agreement is also found with empirical mass-luminosity relations.
Despite fitting the masses of the stars very well, we find that anomalously low helium content (lower than primordial helium) is required to fit the luminosities and temperatures of the metal-poor K dwarfs, while more conventional values of the helium content are derived for the stars around solar metallicity.
We have investigated the effect of diffusion in stellar models and the assumption of local thermodynamic equilibrium (LTE) in deriving metallicities. Neither of these is able to resolve the low-helium problem alone and only marginally if the cumulated effects are included, unless we assume a mixing-length which is strongly decreasing with metallicity. Further work in stellar models is urgently needed.
The helium-to-metal enrichment ratio is found to be  Δ Y /Δ Z = 2.1 ± 0.9  around and above solar metallicity, consistent with previous studies, whereas open problems still remain at the lowest metallicities. Finally, we determine the helium content for a set of planetary host stars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号