首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
大气科学   1篇
地球物理   2篇
地质学   16篇
天文学   8篇
综合类   1篇
自然地理   7篇
  2019年   1篇
  2014年   1篇
  2013年   5篇
  2012年   8篇
  2011年   1篇
  2010年   5篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1995年   1篇
  1989年   3篇
  1977年   1篇
  1969年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
31.
32.
The Middle Miocene evaporites in the Red Sea rift were deposited within a complex system of fault-bounded basins that were episodically active during sedimentation. Such a tectonic framework is known to be highly favourable to resedimentation processes. An offshore petroleum well in the north-western Red Sea has cored, below a massive salt unit, an anhydrite-bearing succession which provides an excellent opportunity to study the processes of gravity induced redeposition of Ca-sulphates in a deep basin. Anhydrite deposits, interbedded with siliciclastic layers and thin halite layers, are composed of resedimented facies ranging from fine-grained laminated sediments to coarse-grained breccias. The components derive from the reworking of shelf sediments deposited initially in shallow water to supratidal settings on the surface and edges of structural highs bordering depressions: proximal siliciclastic deposits with interstitial anhydrite (cement patches, nodules) or gypsum and dolostones with early diagenetic anhydrite facies (nodular, chicken-wire) formed in sabkha conditions, interstitially grown gypsum crystals and subaqueous gypsum crusts precipitated in hypersaline ponds, and diatom-rich oozes formed in marine, shallow-water conditions. The homogeneity of the stable isotope composition and petrography of sulphates argue for the initial crystallization of Ca-sulphates within brines of the same origin and in closely interconnected sedimentary settings. The unconsolidated sediments redeposited as slope-foot accumulations were carried both as anhydrite (nodules, soft masses, various fragments, individual grains or crystals released by disintegration of large masses) and gypsum (crystalline aggregates or single crystals) later converted to anhydrite during burial. Layers of chaotic breccia are interpreted as the result of seismic events, whereas the fine-grained deposits could be related to redistribution by nepheloid layers of suspensions of finer grains released by disintegration of the soft anhydrite masses during downslope transport, or of in situ deposits removed by the turbiditic flows.  相似文献   
33.
Inclusions in Three S-Type Granites from Southeastern Australia   总被引:11,自引:0,他引:11  
The Jillamatong Granodiorite is one of the most mafic S-typegranites in the Kosciusko regidn and is typical of widely distributed,cordierite-bearing S-type granites in the Lachlan Fold Beltof southeastern Australia. The Koetong and Granya Adamellitesbelong to the Koetong Suite of the Corryong Batholith and arerare examples in the Lachlan Fold Belt of granites that containprimary muscovite. Although subtle differences can be found,inclusions within the Jillamatong Granodiorite and the KoetongSuite are broadly similar despite the fact that the JillamatongGranodiorite belongs to a different and distinct suite (theBullenbalong Suite). Mica-rich schistose and micTogranular inclusionsdominate but other types occur, including foliated quartzofeldspathicvarieties, calcsilicates, quartzites, and pure quartz types.The total abundance of all inclusion types in each granite studiedis less than 5.1% although abundance varies from one graniteto another. All inclusions are believed to have been derived from metasedimentaryor modified metasedimentary lithologies and all inclusions,except some quartzites, were entrained at depth where the hostgranite magmas were generated by partial melting of heterogeneoussedimentary sources. The inclusions are restite but most arenot complementary to the melt component of the magma now representedby the host granite. They represent fragments from differentrefractory lithologies of a complex metasedimentary source andbecause their compositions and mineral assemblages were unsuitablefor the generation of large quantities of granite melt, theydid not melt or were melted only to small and variable extents(less than the rheological critical melt percentage of Arzi,1978). Such lithologies remained physically coherent and retainedtheir separation from the host granite magma during ascent.Lithologies that did melt extensively were physically disaggregatedand are not represented among the inclusions. Since the inclusions do not represent complementary restitecontrolling compositional variation among the host granites,their compositions cannot be used to precisely estimate thebulk compositions of the source rocks. However, the different,source-rock derived, inclusion types collectively provide informationregarding the lithologies present in the source and hence thegeneral character of the source terranes. The dominance of schistoseand microgranular inclusions in the Jillamatong Granodioriteand the Koetong Suite indicates that pelitic and quartzofeldspathiccompositions are the two dominant components in the source terranes. Inclusions of the same type from the two suites are broadlysimilar but different in detail. Inclusions reflect the mineralogicaland geochemical characteristics of their host granites and thereare textural differences between microgranular inclusions ofthe two suites examined. The differences reflect subtle butsignificant contrasts in source materials, the conditions prevailingduring partial melting and the history of emplacement and crystallizationof the host magmas.  相似文献   
34.
Abstract– We present initial results from hydrocode modeling of impacts on Al‐1100 foils, undertaken to aid the interstellar preliminary examination (ISPE) phase for the NASA Stardust mission interstellar dust collector tray. We used Ansys’ AUTODYN to model impacts of micrometer‐scale, and smaller projectiles onto Stardust foil (100 μm thick Al‐1100) at velocities up to 300 km s?1. It is thought that impacts onto the interstellar dust collector foils may have been made by a combination of interstellar dust particles (ISP), interplanetary dust particles (IDP) on comet, and asteroid derived orbits, β micrometeoroids, nanometer dust in the solar wind, and spacecraft derived secondary ejecta. The characteristic velocity of the potential impactors thus ranges from <<1 to a few km s?1 (secondary ejecta), approximately 4–25 km s?1 for ISP and IDP, up to hundreds of km s?1 for the nanoscale dust reported by Meyer‐Vernet et al. (2009) . There are currently no extensive experimental calibrations for the higher velocity conditions, and the main focus of this work was therefore to use hydrocode models to investigate the morphometry of impact craters, as a means to determine an approximate impactor speed, and thus origin. The model was validated against existing experimental data for impact speeds up to approximately 30 km s?1 for particles ranging in density from 2.4 kg m?3 (glass) to 7.8 kg m?3 (iron). Interpolation equations are given to predict the crater depth and diameter for a solid impactor with any diameter between 100 nm and 4 μm and density between 2.4 and 7.8 kg m?3.  相似文献   
35.
Abstract– Impacts of small particles of soda‐lime glass and glycine onto low density aerogel are reported. The aerogel had a quality similar to the flight aerogels carried by the NASA Stardust mission that collected cometary dust during a flyby of comet 81P/Wild 2 in 2004. The types of track formed in the aerogel by the impacts of the soda‐lime glass and glycine are shown to be different, both qualitatively and quantitatively. For example, the soda‐lime glass tracks have a carrot‐like appearance and are relatively long and slender (width to length ratio <0.11), whereas the glycine tracks consist of bulbous cavities (width to length ratio >0.26). In consequence, the glycine particles would be underestimated in diameter by a factor of 1.7–3.2, if the glycine tracks were analyzed using the soda‐lime glass calibration and density. This implies that a single calibration for impacting particle size based on track properties, as previously used by Stardust to obtain cometary dust particle size, is inappropriate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号