首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   495篇
  免费   15篇
  国内免费   1篇
测绘学   17篇
大气科学   67篇
地球物理   77篇
地质学   174篇
海洋学   48篇
天文学   82篇
自然地理   46篇
  2021年   8篇
  2020年   5篇
  2019年   4篇
  2018年   5篇
  2017年   12篇
  2016年   17篇
  2015年   11篇
  2014年   20篇
  2013年   21篇
  2012年   11篇
  2011年   30篇
  2010年   22篇
  2009年   31篇
  2008年   16篇
  2007年   14篇
  2006年   15篇
  2005年   16篇
  2004年   10篇
  2003年   25篇
  2002年   19篇
  2001年   8篇
  2000年   13篇
  1999年   12篇
  1998年   12篇
  1997年   10篇
  1996年   5篇
  1995年   6篇
  1994年   10篇
  1992年   4篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   5篇
  1985年   7篇
  1984年   10篇
  1983年   8篇
  1982年   9篇
  1981年   5篇
  1980年   9篇
  1979年   8篇
  1978年   3篇
  1977年   2篇
  1976年   5篇
  1974年   4篇
  1973年   6篇
  1972年   4篇
  1971年   2篇
  1970年   2篇
  1967年   2篇
排序方式: 共有511条查询结果,搜索用时 15 毫秒
121.
Abstract. In April 1990 a new species of mytilid containing bacterial endosymbionts was discovered at a deep-water seep site within Alaminos Canyon in the Gulf of Mexico. Activities of ribulose bisphosphate carboxylase/oxygenase and ATP sulfurylase, as well as the presence of substantial levels of elemental sulfur in the gill tissues indicate the presence of chemoautotrophic sulfur-oxidizing symbionts in the gills. Methanol dehydrogenase activity and the tissue stable carbon isotope ratios indicate the presence of methanotrophic bacteria in the gills of the same animals. Two distinct size classes and morphological types of gram negative bacteria are visible in transmission electron micrographs of the gill tissue, one of which contains the complex internal membranes typical of methanotrophs. Both general types of symbionts have been demonstrated singly in related species of deep-sea mytilids. In this species, however, both types are found in single individuals, often within the same cell vacuole.  相似文献   
122.
123.
The transferability of hydrologic models is of ever increasing importance for making improved hydrologic predictions and testing hypothesized hydrologic drivers. Here, we present an investigation into the variability and transferability of the recently introduced catchment connectivity model (Smith et al., 2013 ). The catchment connectivity model was developed following extensive experimental observations identifying the key drivers of streamflow in the Tenderfoot Creek Experimental Forest (Jencso et al., 2009 ; Jencso et al., 2010 ), with the goal of creating a simple model consistent with internal observations of catchment hydrologic connectivity patterns. The model was applied across seven catchments located within Tenderfoot Creek Experimental Forest to investigate spatial variability and transferability of model performance and parameterization. The results demonstrated that the model resulted in historically good fits (based on previous studies at the sites) to both the hydrograph and internal water table dynamics (corroborated with experimental observations). The impact of a priori parameter limits was also examined. It was observed that enforcing field‐based limits on model parameters resulted in slight reductions to streamflow hydrograph fits, but significant improvements to model process fidelity (as hydrologic connectivity), as well as moderate improvement in the transferability of model parameterizations from one catchment to the next. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
124.
125.
Soil moisture is an important driver of growth in boreal Alaska, but estimating soil hydraulic parameters can be challenging in this data-sparse region. Parameter estimation is further complicated in regions with rapidly warming climate, where there is a need to minimize model error dependence on interannual climate variations. To better identify soil hydraulic parameters and quantify energy and water balance and soil moisture dynamics, we applied the physically based, one-dimensional ecohydrological Simultaneous Heat and Water (SHAW) model, loosely coupled with the Geophysical Institute of Permafrost Laboratory (GIPL) model, to an upland deciduous forest stand in interior Alaska over a 13-year period. Using a Generalized Likelihood Uncertainty Estimation parameterisation, SHAW reproduced interannual and vertical spatial variability of soil moisture during a five-year validation period quite well, with root mean squared error (RMSE) of volumetric water content at 0.5 m as low as 0.020 cm3/cm3. Many parameter sets reproduced reasonable soil moisture dynamics, suggesting considerable equifinality. Model performance generally declined in the eight-year validation period, indicating some overfitting and demonstrating the importance of interannual variability in model evaluation. We compared the performance of parameter sets selected based on traditional performance measures such as the RMSE that minimize error in soil moisture simulation, with one that is designed to minimize the dependence of model error on interannual climate variability using a new diagnostic approach we call CSMP, which stands for Climate Sensitivity of Model Performance. Use of the CSMP approach moderately decreases traditional model performance but may be more suitable for climate change applications, for which it is important that model error is independent from climate variability. These findings illustrate (1) that the SHAW model, coupled with GIPL, can adequately simulate soil moisture dynamics in this boreal deciduous region, (2) the importance of interannual variability in model parameterisation, and (3) a novel objective function for parameter selection to improve applicability in non-stationary climates.  相似文献   
126.
Annual streamflows have decreased across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years; however, in some watersheds, observed annual flows have increased. Physically based models are useful tools to reveal the combined effects of climate and vegetation on long‐term water balances by explicitly simulating the internal watershed hydrological fluxes that affect discharge. We used the physically based Simultaneous Heat and Water (SHAW) model to simulate the inter‐annual hydrological dynamics of a 4 km2 watershed in northern Idaho. The model simulates seasonal and annual water balance components including evaporation, transpiration, storage changes, deep drainage, and trends in streamflow. Independent measurements were used to parameterize the model, including forest transpiration, stomatal feedback to vapour pressure, forest properties (height, leaf area index, and biomass), soil properties, soil moisture, snow depth, and snow water equivalent. No calibrations were applied to fit the simulated streamflow to observations. The model reasonably simulated the annual runoff variations during the evaluation period from water year 2004 to 2009, which verified the ability of SHAW to simulate the water budget in this small watershed. The simulations indicated that inter‐annual variations in streamflow were driven by variations in precipitation and soil water storage. One key parameterization issue was leaf area index, which strongly influenced interception across the catchment. This approach appears promising to help elucidate the mechanisms responsible for hydrological trends and variations resulting from climate and vegetation changes on small watersheds in the region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
127.
Understanding the pace and drivers of marine-based ice-sheet retreat relies upon the integration of numerical ice-sheet models with observations from contemporary polar ice sheets and well-constrained palaeo-glaciological reconstructions. This paper provides a reconstruction of the retreat of the last British–Irish Ice Sheet (BIIS) from the Atlantic shelf west of Ireland during and following the Last Glacial Maximum (LGM). It uses marine-geophysical data and sediment cores dated by radiocarbon, combined with terrestrial cosmogenic nuclide and optically stimulated luminescence dating of onshore ice-marginal landforms, to reconstruct the timing and rate of ice-sheet retreat from the continental shelf and across the adjoining coastline of Ireland, thus including the switch from a marine- to a terrestrially-based ice-sheet margin. Seafloor bathymetric data in the form of moraines and grounding-zone wedges on the continental shelf record an extensive ice sheet west of Ireland during the LGM which advanced to the outer shelf. This interpretation is supported by the presence of dated subglacial tills and overridden glacimarine sediments from across the Porcupine Bank, a westwards extension of the Irish continental shelf. The ice sheet was grounded on the outer shelf at ~26.8 ka cal bp with initial retreat underway by 25.9 ka cal bp. Retreat was not a continuous process but was punctuated by marginal oscillations until ~24.3 ka cal bp. The ice sheet thereafter retreated to the mid-shelf where it formed a large grounding-zone complex at ~23.7 ka cal bp. This retreat occurred in a glacimarine environment. The Aran Islands on the inner continental shelf were ice-free by ~19.5 ka bp and the ice sheet had become largely terrestrially based by 17.3 ka bp. This suggests that the Aran Islands acted to stabilize and slow overall ice-sheet retreat once the BIIS margin had reached the inner shelf. Our results constrain the timing of initial retreat of the BIIS from the outer shelf west of Ireland to the period of minimum global eustatic sea level. Initial retreat was driven, at least in part, by glacio-isostatically induced, high relative sea level. Net rates of ice-sheet retreat across the shelf were slow (62–19 m a−1) and reduced (8 m a−1) as the ice sheet vacated the inner shelf and moved onshore. A picture therefore emerges of an extensive BIIS on the Atlantic shelf west of Ireland, in which early, oscillatory retreat was followed by slow episodic retreat which decelerated further as the ice margin became terrestrially based. More broadly, this demonstrates the importance of localized controls, in particular bed topography, on modulating the retreat of marine-based sectors of ice sheets.  相似文献   
128.
129.
Reconstructed sunspot data are available that extend solar activity back to 11 360 years before the present. We have examined these data using Hurst analysis, a moving average filter, and Fourier analysis. All of the procedures indicate the presence of a long term (≈6 000 year) cycle not previously reported. A number of shorter cycles formerly identified in the literature by using Fourier analysis, Bayes methods, and maximum entropy methods were also detected in the reconstructed sunspot data.  相似文献   
130.
Effect of climate change on watershed system: a regional analysis   总被引:1,自引:0,他引:1  
Climate-induced increase in surface temperatures can impact hydrologic processes of a watershed system. This study uses a continuous simulation model to evaluate potential implications of increasing temperature on water quantity and quality at a regional scale in the Connecticut River Watershed of New England. The increase in temperature was modeled using Intergovernmental Panel on Climate Change (IPCC) high and low warming scenarios to incorporate the range of possible temperature change. It was predicted that climate change can have a significant affects on streamflow, sediment loading, and nutrient (nitrogen and phosphorus) loading in a watershed. Climate change also influences the timing and magnitude of runoff and sediment yield. Changes in variability of flows and pollutant loading that are induced by climate change have important implications on water supplies, water quality, and aquatic ecosystems of a watershed. Potential impacts of these changes include deficit supplies during peak seasons of water demand, increased eutrophication potential, and impacts on fish migration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号