首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   7篇
  国内免费   5篇
大气科学   8篇
地球物理   23篇
地质学   51篇
海洋学   11篇
天文学   18篇
自然地理   16篇
  2023年   1篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   13篇
  2012年   4篇
  2011年   8篇
  2010年   7篇
  2009年   9篇
  2008年   8篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1964年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
101.
In this paper, we applied a reliable technique for measuring Fe isotope variations in coastal seawater at nanomolar levels. Iron was directly pre-concentrated from acidified seawater samples onto a nitrilotriacetic acid chelating resin and further purified using anion-exchange resin. Sample recovery, determined using a standard addition method, was essentially quantitative. Iron was then determined using a high-resolution multicollector ICP-MS (Neptune) coupled to an ApexQ desolvation introduction system. The external precision for δ56Fe values was 0.11‰ (2s) when using total a Fe quantity between 25 and 100 ng. We initially applied this technique to measure the Fe isotope composition of dissolved Fe from several coastal environments in the north-eastern United States and we observed a range of δ56Fe values between -0.9‰ and 0.1‰ relative to the IRMM-14 reference material. Iron isotope compositions of several reference water materials for inter-laboratory comparisons were also reported. Our results suggest that iron in coastal seawater, derived from benthic diagenesis and/or groundwater has negative Fe isotopic signatures that are distinct from other iron sources such as atmospheric deposition and rivers.  相似文献   
102.
Pyroxenitic layers are a minor constituent of ultramafic mantle massifs, but are considered important for basalt generation and mantle refertilization. Mafic spinel websterite and garnet-spinel clinopyroxenite layers within Jurassic ocean floor peridotites from the Totalp ultramafic massif (eastern Swiss Alps) were analyzed for their highly siderophile element (HSE) and Os isotope composition.Aluminum-poor pyroxenites (websterites) display chondritic to suprachondritic initial γOs (160 Ma) of −2 to +27. Osmium, Ir and Ru abundances are depleted in websterites relative to the associated peridotites and to mantle lherzolites worldwide, but relative abundances (Os/Ir, Ru/Ir) are similar. Conversely, Pt/Ir, Pd/Ir and Re/Ir are elevated.Aluminum-rich pyroxenites (clinopyroxenites) are characterized by highly radiogenic 187Os/188Os with initial γOs (160 Ma) between +20 and +1700. Their HSE composition is similar to that of basalts, as they are more depleted in Os, Ir and Ru compared to Totalp websterites, along with even higher Pt/Ir, Pd/Ir and Re/Ir. The data are most consistent with multiple episodes of reaction of mafic pyroxenite precursor melts with surrounding peridotites, with the highest degree of interaction recorded in the websterites, which typically occur in direct contact to peridotites. Clinopyroxenites, in contrast, represent melt-dominated systems, which retained the precursor melt characteristics to a large extent. The melts may have been derived from a sublithospheric mantle source with high Pd/Ir, Pt/Ir and Re/Os, coupled with highly radiogenic 187Os/188Os compositions. Modeling indicates that partial melting of subducted, old oceanic crust in the asthenosphere could be a possible source for such melts.Pentlandite and godlevskite are identified in both types of pyroxenites as the predominant sulfide minerals and HSE carriers. Heterogeneous HSE abundances within these sulfide grains likely reflect subsolidus processes. In contrast, large grain-to-grain variations, and correlated variations of HSE ratios, indicate chemical disequilibrium under high-temperature conditions. This likely reflects multiple events of melt-rock interaction and sulfide precipitation. Notably, sulfides from the same thick section for the pyroxenites may display both residual-peridotite and melt-like HSE signatures. Because Totalp pyroxenites are enriched in Pt and Re, and depleted in Os, they will develop excess radiogenic 187Os and 186Os, compared to ambient mantle. These enrichments, however, do not possess the requisite Pt-Re-Os composition to account for the coupled suprachondritic 186Os-187Os signatures observed in some Hawaiian picrites, Gorgona komatiites, or the Siberian plume.  相似文献   
103.
Development of cloud detection methods using CFH,GTS1, and RS80 radiosondes   总被引:1,自引:0,他引:1  
The accuracies of three instruments in measuring atmospheric column humidity were assessed during an upper troposphere and lower stratosphere observation campaign conducted from 7 to 13 August 2009 in ...  相似文献   
104.
105.
Several species of ostracods, new to New Zealand, are described, including Darwinula sphagna n.sp. and Cypridopsis obstinata n.sp. Limnocythere duffi Hornibrook, 1955 is placed in the genus Gomphocythere Sars, 1924, and a colour variation of Newnhamia fenestrata King, 1855 is discussed.  相似文献   
106.
107.
We present reflectance spectra from 0.4 to 2.4 μm of Asteroid (101955) 1999 RQ36, the target of the OSIRIS-REx spacecraft mission. The visible spectral data were obtained at the McDonald Observatory 2.1-m telescope with the ES2 spectrograph. The infrared spectral data were obtained at the NASA Infrared Telescope Facility using the SpeX instrument. The average visible spectrum is combined with the average near-infrared wavelength spectrum to form a composite spectrum. We use three methods to constrain the compositional information in the composite spectrum of Asteroid (101955) 1999 RQ36 (hereafter RQ36). First, we perform a least-squares search for meteorite spectral analogs using 15,000 spectra from the RELAB database. Three most likely meteorite analogs are proposed based on the least-squares search. Next, six spectral parameters are measured for RQ36 and their values are compared with the ranges in parameter values of the carbonaceous chondrite meteorite classes. A most likely meteorite analog group is proposed based on the depth of overlap in parameter values. The results of the least-squares search and the parametric comparisons point to CIs and/or CMs as the most likely meteorite analogs for RQ36, and COs and CHs as the least likely. RQ36 has a spectrally “blue” continuum slope that is also observed in carbonaceous chondrites containing magnetite. We speculate that RQ36 is composed of a “CM1”-like material. Finally, we compare RQ36 to other B-type asteroids measured by Clark et al. (Clark, B.E. et al. [2010]. J. Geophys. Res. 115, E06005). The results of this comparison are inconclusive. RQ36 is comparable to Themis spectral properties in terms of its albedo, visible spectrum, and near-infrared spectrum from 1.1 to 1.45 μm. However, RQ36 is more similar to Pallas in terms of its near-infrared spectrum from 1.6 to 2.3 μm. Thus it is possible that B-type asteroids form a spectral continuum and that RQ36 is a transitional object, spectrally intermediate between the two end-members. This is particularly interesting because Asteroid 24 Themis was recently discovered to have H2O ice on the surface (Rivkin, A., Emery, J. [2010]. Nature 464, 1322–1323; Campins, H. et al. [2010a]. Nature 464, 1320–1321).  相似文献   
108.
109.
Oxygen isotope, mineral trace element, and measured and reconstructed whole-rock compositions are reported for the high MgO eclogite xenolith suite (16 to 20 wt% MgO in the whole rock) from the Koidu Kimberlite complex, Sierra Leone. In contrast to the previously published data for low MgO eclogites (6 to 13 wt% MgO) from this area, high MgO eclogites equilibrated at higher temperatures (1080 to 1130°C vs. 890 to 930°C) have only mantlelike δ18O and show variable degrees of light rare earth element (REE) enrichment. Analyses of multiple mineral generations suggest that the heterogeneous REE patterns of the high MgO eclogites reflect variable degrees of metasomatic overprinting. High MgO and Al2O3 contents of the eclogites suggest a cumulate origin, either as high-pressure (2 to 3 GPa) garnet-pyroxene cumulates or low-pressure (<1 GPa) plagioclase-pyroxene-olivine cumulates. Trace element modeling suggests a low-P origin for eclogites with flat heavy REE patterns and a high-P origin for eclogites with fractionated heavy REE. Flat heavy REE patterns, the presence of Sr anomalies, and low to moderate transition element contents in the low-P group are consistent with a low-pressure origin as metamorphosed olivine gabbros and troctolites. These metagabbroic high MgO eclogites either could represent the basal section of subducted oceanic crust or foundered mafic lower continental crust. In the former case, the metagabbroic high MgO eclogites may be genetically related to the Koidu low MgO suite. Crystal fractionation trends suggest that the metapyroxenitic high MgO eclogites formed at lower pressures than their current estimated equilibrium pressures (>4 GPa).  相似文献   
110.
Thomas R. McDonough 《Icarus》1975,24(4):400-406
The Jovian hydrogen torus associated with Io, that was observed by Judge and Carlson, has been found by them to be a third of a torus rather than a complete torus. It is shown that the energetic particles observed by Pioneer 10 do not ionize atomic hydrogen sufficiently fast to erode the torus as observed. It is proposed that the reason an incomplete torus exists is the presence of a corotating cold magnetospheric plasma. If this explanation is correct, the angular extent of the fractional torus is a measure of the density of the magnetospheric plasma near Io's orbit, which is found to be ~102cm?3. It is shown that such a plasma may provide an adequate input to Io, where it can recombine and escape, to form enough hydrogen atoms to explain the number of observed torus atoms. Thus the magnetospheric plasma may serve as both the source and the sink of the torus. However, while it is not difficult to make the plasma be the sink of the toroidal hydrogen, it is difficult (although perhaps possible) to self-consistently make it the source. It may be necessary to invoke some other mechanism to generate the hydrogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号