首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   431篇
  免费   19篇
  国内免费   8篇
测绘学   8篇
大气科学   30篇
地球物理   135篇
地质学   122篇
海洋学   46篇
天文学   75篇
综合类   4篇
自然地理   38篇
  2023年   2篇
  2021年   5篇
  2020年   7篇
  2019年   7篇
  2018年   13篇
  2017年   11篇
  2016年   18篇
  2015年   2篇
  2014年   10篇
  2013年   13篇
  2012年   13篇
  2011年   27篇
  2010年   9篇
  2009年   22篇
  2008年   28篇
  2007年   28篇
  2006年   31篇
  2005年   20篇
  2004年   23篇
  2003年   13篇
  2002年   14篇
  2001年   4篇
  2000年   11篇
  1999年   5篇
  1998年   7篇
  1997年   5篇
  1996年   3篇
  1995年   8篇
  1994年   4篇
  1993年   8篇
  1992年   3篇
  1991年   5篇
  1990年   6篇
  1989年   9篇
  1988年   8篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1984年   10篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1979年   2篇
  1978年   2篇
  1977年   6篇
  1974年   2篇
  1971年   3篇
  1970年   2篇
  1968年   1篇
  1967年   2篇
排序方式: 共有458条查询结果,搜索用时 463 毫秒
51.
—Borehole seismograms from local earthquakes in the aftershock region of the 1984 western Nagano Prefecture, Japan earthquake were analyzed to measure the frequency-dependent characteristics of P- and S-wave attenuation in the upper crust. The records from a three-component velocity seismometer at the depth of 145m exhibit high S/N-ratio in a wide frequency range up to 100 Hz. Extended coda normalization methods were applied to bandpass-filtered seismograms of frequencies from 25 to 102 Hz. For the attenuation of high-frequency P and S waves, our measurements show Q P -1? 0.052?-0.66 and Q S -1? 0.0034?-0.12 respectively. The frequency dependence of the quality factor of S waves is very weak as compared with that of P waves. The ratio of Q P -1/Q S -1 is larger than unity in the entire analyzed frequency range.  相似文献   
52.
A new technique has been developed for measuring the diffusion coefficient in ionic crystals. Based on Einstein's formula expressing the relation between diffusion coefficient and electric mobility, the electrical impedance of a diatomic ionic crystal is derived theoretically as a function of frequency of the applied electric field. In this method, the diffusion coefficients of both cations and anions are determined simultaneously by fitting the measured impedance to the theoretical relation. This method was applied to NaCl single crystals in the temperature range 370–780°C. The impedance was determined over the frequency range 0.01 Hz to 1 kHz, at constant temperature. The diffusion coefficients thus obtained for NaCl agree reasonably well with previous data by means of a radioactive isotope technique. The activation energies for Na+ and Cl? obtained are 1.97±0.03 eV and 2.08±0.06 eV, respectively, in the intrinsic region, and 0.92±0.02 eV and 1.06±0.02 eV in the extrinsic region. It was discovered that there are diffusion blocks of approximately 2 μm width, which obstruct free migration of ions in a single crystal.  相似文献   
53.
A monthly mean climatology of the mixed layer depth (MLD) in the North Pacific has been produced by using Argo observations. The optimum method and parameter for evaluating the MLD from the Argo data are statistically determined. The MLD and its properties from each density profile were calculated with the method and parameter. The monthly mean climatology of the MLD is computed on a 2° × 2° grid with more than 30 profiles for each grid. Two bands of deep mixed layer with more than 200 m depth are found to the north and south of the Kuroshio Extension in the winter climatology, which cannot be reproduced in some previous climatologies. Early shoaling of the winter mixed layer between 20–30°N, which has been pointed out by previous studies, is also well recognized. A notable feature suggested by our climatology is that the deepest mixed layer tends to occur about one month before the mixed layer density peaks in the middle latitudes, especially in the western region, while they tend to coincide with each other in higher latitudes.  相似文献   
54.
55.
We present a study of the long-term evolution of the cloud of aerosols produced in the atmosphere of Jupiter by the impact of an object on 19 July 2009 (Sánchez-Lavega, A. et al. [2010]. Astrophys. J. 715, L155-L159). The work is based on images obtained during 5 months from the impact to 31 December 2009 taken in visible continuum wavelengths and from 20 July 2009 to 28 May 2010 taken in near-infrared deep hydrogen-methane absorption bands at 2.1-2.3 μm. The impact cloud expanded zonally from ∼5000 km (July 19) to 225,000 km (29 October, about 180° in longitude), remaining meridionally localized within a latitude band from 53.5°S to 61.5°S planetographic latitude. During the first two months after its formation the site showed heterogeneous structure with 500-1000 km sized embedded spots. Later the reflectivity of the debris field became more homogeneous due to clump mergers. The cloud was mainly dispersed in longitude by the dominant zonal winds and their meridional shear, during the initial stages, localized motions may have been induced by thermal perturbation caused by the impact’s energy deposition. The tracking of individual spots within the impact cloud shows that the westward jet at 56.5°S latitude increases its eastward velocity with altitude above the tropopause by 5-10 m s−1. The corresponding vertical wind shear is low, about 1 m s−1 per scale height in agreement with previous thermal wind estimations. We found evidence for discrete localized meridional motions with speeds of 1-2 m s−1. Two numerical models are used to simulate the observed cloud dispersion. One is a pure advection of the aerosols by the winds and their shears. The other uses the EPIC code, a nonlinear calculation of the evolution of the potential vorticity field generated by a heat pulse that simulates the impact. Both models reproduce the observed global structure of the cloud and the dominant zonal dispersion of the aerosols, but not the details of the cloud morphology. The reflectivity of the impact cloud decreased exponentially with a characteristic timescale of 15 days; we can explain this behavior with a radiative transfer model of the cloud optical depth coupled to an advection model of the cloud dispersion by the wind shears. The expected sedimentation time in the stratosphere (altitude levels 5-100 mbar) for the small aerosol particles forming the cloud is 45-200 days, thus aerosols were removed vertically over the long term following their zonal dispersion. No evidence of the cloud was detected 10 months after the impact.  相似文献   
56.
Large-eddy simulations were conducted to investigate the mechanism of pollutant removal from a three-dimensional street canyon. Five block configurations with aspect ratios (building height to length) of 1, 2, 4, 8 and $\infty $ were used to create an urban-like array. A pollutant was released from a ground-level line source at the centre of the target canyon floor. For smaller aspect ratios, the relative contribution of the turbulent mass flux to net mass flux at the roof level, which was spatially averaged along the roof-level ventilation area, was closer to unity, indicating that turbulent motions mainly affected pollutant removal from the top of the canyon. As aspect ratio increased, the relative contribution became smaller, owing to strong upwind motions. However, the relative contribution again reached near unity for the infinite aspect ratio (i.e. a two-dimensional street canyon) because of lowered lateral flow convergence. At least 75 % of total emissions from the three-dimensional street canyon were attributable to turbulent motions. Pollutant removal by turbulent motions was related to the coherent structures of low-momentum fluid above the canyons. Though the coherent structure size of the low-momentum fluid differed, the positions of low-momentum fluid largely corresponded to instantaneous high concentrations of pollutant above the target canyon, irrespective of canyon geometry.  相似文献   
57.
The Chatree deposit is located in the Loei‐Phetchabun‐Nakhon Nayok volcanic belt that extends from Laos in the north through central and eastern Thailand into Cambodia. Gold‐bearing quartz veins at the Q prospect of the Chatree deposit are hosted within polymictic andesitic breccia and volcanic sedimentary breccia. The orebodies of the Chatree deposit consist of veins, veinlets and stockwork. Gold‐bearing quartz veins are composed mainly of quartz, calcite and illite with small amounts of adularia, chlorite and sulfide minerals. The gold‐bearing quartz veins were divided into five stages based on the cross‐cutting relationship and mineral assemblage. Intense gold mineralization occurred in Stages I and IV. The mineral assemblage of Stages I and IV is characterized by quartz–calcite–illite–laumontite–adularia–chlorite–sulfide minerals and electrum. Quartz textures of Stages I and IV are also characterized by microcrystalline and flamboyant textures, respectively. Coexistence of laumontite, illite and chlorite in the gold‐bearing quartz vein of Stage IV suggests that the gold‐bearing quartz veins were formed at approximately 200°C. The flamboyant and brecciated textures of the gold‐bearing quartz vein of Stage IV suggest that gold precipitated with silica minerals from a hydrothermal solution that was supersaturated by boiling. The δ18O values of quartz in Stages I to V range from +10.4 to +11.6‰ except for the δ18O value of quartz in Stage IV (+15.0‰). The increase in δ18O values of quartz at Stage IV is explained by boiling. PH2O is estimated to be 16 bars at 200°C. The fCO2 value is estimated to be 1 bar based on the presence of calcite in the mineral assemblage of Stage IV. The total pressure of the hydrothermal solution is approximately 20 bars at 200°C, suggesting that the gold‐bearing quartz veins of the Q prospect formed about 200 m below the paleosurface.  相似文献   
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号