首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   7篇
  国内免费   4篇
测绘学   2篇
大气科学   5篇
地球物理   28篇
地质学   52篇
海洋学   8篇
天文学   29篇
综合类   3篇
自然地理   11篇
  2021年   4篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   4篇
  2011年   11篇
  2010年   7篇
  2009年   11篇
  2008年   7篇
  2007年   6篇
  2006年   10篇
  2005年   1篇
  2004年   5篇
  2003年   6篇
  2002年   9篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   7篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1984年   1篇
  1979年   2篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
91.
<正>Arthropodan syninclusions in the Late Eocene Rovno amber were examined using x~2 to reveal correlation of the component groups(some taxa of Diptera,ants,aphids,and mites) supposedly indicative of the biocoenotic relationships in the ancient amber forest.Three tightly correlated groups were identified,representing a putative aerial plankton guild(Chironomidae+Ceratopogonidae) and two tree-trunk guilds,one of which (Dolichopodidae+Germaraphis) is possibly connected to more open or/and more hygrophilous habitats than the other(Sciara zone Diptera +"Acarus"rhombeus).The ants were not linked with any of the above components.  相似文献   
92.
We study the distribution function (DF) of dark matter particles in haloes of mass range  1014–1015 M  . In the numerical part of this work we measure the DF for a sample of relaxed haloes formed in the simulation of a standard Λ cold dark matter (ΛCDM) model. The DF is expressed as a function of energy E and the absolute value of the angular momentum L , a form suitable for comparison with theoretical models. By proper scaling we obtain the results that do not depend on the virial mass of the haloes. We demonstrate that the DF can be separated into energy and angular momentum components and propose a phenomenological model of the DF in the form     . This formulation involves three parameters describing the anisotropy profile in terms of its asymptotic values (β0 and  β  ) and the scale of transition between them ( L 0). The energy part   f E ( E )  is obtained via inversion of the integral for spatial density. We provide a straightforward numerical scheme for this procedure as well as a simple analytical approximation for a typical halo formed in the simulation. The DF model is extensively compared with the simulations: using the model parameters obtained from fitting the anisotropy profile, we recover the DF from the simulation as well as the profiles of the dispersion and kurtosis of radial and tangential velocities. Finally, we show that our DF model reproduces the power-law behaviour of phase-space density   Q =ρ( r )/σ3( r )  .  相似文献   
93.
We report the discovery of the oldest evidence for human presence in the southeastern Baltic Sea region. This paper presents an overview of the Riadino‐5 archaeological site in the lower course of the Šešupė River (Kaliningrad Oblast of Russia) and direct infrared stimulated luminescence (IRSL) ages for the culture‐bearing sediments from the site, which place the time of occupation well within the range of Marine Isotope Stage (MIS) 3 (ca 57–26 ka). Luminescence ages were determined using the multiple‐aliquot additive‐dose technique, applied to sand‐sized potassium feldspar. Four of the six IRSL samples from the site come from the cultural deposits, while two are from the surrounding sediments. The luminescence age of the deposits implies that human occupation of the southeastern Baltic Sea region occurred at least between 50 ka and 44 ka during the first half of MIS 3 and the Middle‐Upper Paleolithic.  相似文献   
94.
Waxing and waning ice sheets and changing sea levels have been interpreted from the Quaternary stratigraphic record at Leinstranda, Brøggerhalvøya in NW Svalbard. We have identified seven high relative sea-level events, related to glacio-isostatic loading, and separated by at least four glacial events. To establish a chronology for the high sea-level events (interstadials and interglacials) and the intervening glaciations, we have used three different absolute dating methods: optically stimulated luminescence (OSL) of shallow marine deposits, and electron spin resonance (ESR) and radiocarbon (AMS-14C) dating of fossils contained in these sediments. Of the absolute dating methods, OSL has provided the stratigraphically most consistent dataset and which also matches a biostratigraphically inferred interglacial. The ESR ages of mollusc shells suffer from low precision due to unusually large uranium content in most dated shell samples, which in turn is most likely a result of significant recent uranium enrichment of the sediments. Most radiocarbon ages are non-finite. The results show that the high relative sea-level events range in age from the Saalian sensu lato (≥Marine Isotope Stage, MIS, 6) to the early Holocene (MIS 1), and include events OSL-dated to 185 ± 8 ka, 129 ± 10 ka, 99 ± 8 ka and 36 ± 3 ka. The methods used by us and by previous investigators of the same site are compared and assessed, and sources of error, accuracy and precision of ages are discussed.  相似文献   
95.
In order to constrain the origin and fluxes of elements carried by rivers of high latitude permafrost-dominated areas, major and trace element concentrations as well as Sr and U isotopic ratios were analyzed in the dissolved load of two Siberian rivers (Kochechum and Nizhnyaya Tunguska) regularly sampled over two hydrological cycles (2005-2007). Large water volumes of both rivers were also collected in spring 2008 in order to perform size separation through dialysis experiments. This study was completed by spatial sampling of the Kochechum watershed carried out during summer and by a detailed analysis of the main hydrological compartments of a small watershed. From element concentration variations along the hydrological cycle, different periods can be marked out, matching hydrological periods. During winter baseflow period (October to May) there is a concentration increase for major soluble cations and anions by an order of magnitude. The spring flood period (end of May-beginning of June) is marked by a sharp concentration decrease for soluble elements whereas dissolved organic carbon and insoluble element concentrations strongly increase.When the spring flood discharge occurs, the significant increase of aluminum and iron concentrations is related to the presence of organo-mineral colloids that mobilize insoluble elements. The study of colloidal REE reveals the occurrence of two colloid sources successively involved over time: spring colloids mainly originate from the uppermost organic-rich part of soils whereas summer colloids rather come from the deep mineral horizons. Furthermore, U and Sr isotopic ratios together with soluble cation budgets in the Kochechum river impose for soluble elements the existence of three distinct fluxes over the year: (a) at the spring flood a surface flux coming from the leaching of shallow organic soil levels and containing a significant colloidal component (b) a subsurface flux predominant during summer and fall mainly controlled by water-rock interactions within mineral soils and (c) a deep groundwater flux predominant during winter which enters large rivers through unfrozen permafrost-paths. Detailed study of the Kochechum watershed suggests that the contribution of this deep flux strongly depends on the depth and continuous nature of the permafrost.  相似文献   
96.
主要介绍了高压脉冲放电技术的发展现状、成桩机理、成桩特点以及成桩的新工艺。该成桩方法具有高的承载能力和经济效益,具有其它桩所不具有的优点。还对其成桩技术的应用前景进行了展望。  相似文献   
97.
98.
Interactions in a Fe–C–O–H–N system that controls the mobility of siderophile nitrogen and carbon in the Fe0-saturated upper mantle are investigated in experiments at 6.3–7.8 GPa and 1200–1400 °C. The results show that the γ-Fe and metal melt phases equilibrated with the fluid in a system unsaturated with carbon and nitrogen are stable at 1300 °C. The interactions of Fe3C with an N-rich fluid in a graphite-saturated system produce the ε-Fe3N phase (space group P63/mmc or P6322) at subsolidus conditions of 1200–1300 °C, while N-rich melts form at 1400 °C. At IW- and MMO-buffered hydrogen fugacity (fH2), fluids vary from NH3- to H2O-rich compositions (NH3/N2?>?1 in all cases) with relatively high contents of alkanes. The fluid derived from N-poor samples contains less H2O and more carbon which mainly reside in oxygenated hydrocarbons, i.e., alcohols and esters at MMO-buffered fH2 and carboxylic acids at unbuffered fH2 conditions. In unbuffered conditions, N2 is the principal nitrogen host (NH3/N2?≤?0.1) in the fluid equilibrated with the metal phase. Relatively C- and N-rich fluids in equilibrium with the metal phase (γ-Fe, melt, or Fe3N) are stable at the upper mantle pressures and temperatures. According to our estimates, the metal/fluid partition coefficient of nitrogen is higher than that of carbon. Thus, nitrogen has a greater affinity for iron than carbon. The general inference is that reduced fluids can successfully transport volatiles from the metal-saturated mantle to metal-free shallow mantle domains. However, nitrogen has a higher affinity for iron and selectively accumulates in the metal phase, while highly mobile carbon resides in the fluid phase. This may be a controlling mechanism of the deep carbon and nitrogen cycles.  相似文献   
99.
The article presents a new tectonic scheme of Venus and gives the following interpretation of the planet's main structural units: (1) plains — areas of flood volcanism over stretched crust; (2) dome-like uplifts — areas of uplifting and volcanic activity above the mantle hot-spots; (3) coronae —former dome-like uplifts, partially subsided and diffused by gravity; (4) ridge belts — fold zones; (5) tesserae — fragments of ductile compression and shortening of crust; (6) supercoronae — coronae formed in the course of further evolution and relaxation of Beta-type uplifts. Ishtar Terra is considered to be a fragment of an ancient tessera paleocontinent, on the edge of which the Lakshmi supercorona is superimposed. Aphrodite Terra is considered as a belt of mantle hot-spot structures (dome-like uplifts, coronae, supercoronae, volcanoes, rifts).Three types of planetary belts have been distinguished on Venus: uplifted 'weakened' belts with an abundance of mantle hot-spot structures; a northern fan of ridge belts; and belts of low basalt plains. The center of the planetary system of uplifted weakened belts is situated in Atla Regio.The present tectonic structure of Venus is inferred to have formed during two stages of evolution characterized by different tectonic regimes. Stage I is a regime of soft ductile plates (formation of tessera uplifts and volcanic plains). Stage II is a formation of 'weakened' uplifted planetary belts, various tectonic regimes of mantle hot-spots, and plains-forming volcanism.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci. Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   
100.
A new mineral kobyashevite, Cu5(SO4)2(OH)6·4H2O (IMA 2011–066), was found at the Kapital’naya mine, Vishnevye Mountains, South Urals, Russia. It is a supergene mineral that occurs in cavities of a calcite-quartz vein with pyrite and chalcopyrite. Kobyashevite forms elongated crystals up to 0.2 mm typically curved or split and combined into thin crusts up to 1?×?2 mm. Kobyashevite is bluish-green to turquoise-coloured. Lustre is vitreous. Mohs hardness is 2½. Cleavage is {010} distinct. D(calc.) is 3.16 g/cm3. Kobyashevite is optically biaxial (?), α 1.602(4), β 1.666(5), γ 1.679(5), 2 V(meas.) 50(10)°. The chemical composition (wt%, electron-microprobe data) is: CuO 57.72, ZnO 0.09, FeO 0.28, SO3 23.52, H2O(calc.) 18.39, total 100.00. The empirical formula, calculated based on 18 O, is: Cu4.96Fe0.03Zn0.01S2.01O8.04(OH)5.96·4H2O. Kobyashevite is triclinic, $ P\overline{\,1 } $ , a 6.0731(6), b 11.0597(13), c 5.5094(6)?Å, α 102.883(9)°, β 92.348(8)°, γ 92.597(9)°, V 359.87(7)?Å3, Z?=?1. Strong reflections of the X-ray powder pattern [d,Å-I(hkl)] are: 10.84–100(010); 5.399–40(020); 5.178–12(110); 3.590–16(030); 2.691–16(20–1, 040, 002), 2.653–12(04–1, 02–2), 2.583–12(2–11, 201, 2–1–1), 2.425–12(03–2, 211, 131). The crystal structure (single-crystal X-ray data, R?=?0.0399) сontains [Cu4(SO4)2(OH)6] corrugated layers linked via isolated [CuO2(H2O)4] octahedra; the structural formula is CuCu4(SO4)2(OH)6·4H2O. Kobyashevite is a devilline-group member. It is named in memory of the Russian mineralogist Yuriy Stepanovich Kobyashev (1935–2009), a specialist on mineralogy of the Urals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号