首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   35篇
  国内免费   1篇
测绘学   14篇
大气科学   22篇
地球物理   143篇
地质学   55篇
海洋学   41篇
天文学   40篇
自然地理   45篇
  2024年   2篇
  2022年   1篇
  2021年   4篇
  2020年   10篇
  2019年   15篇
  2018年   10篇
  2017年   9篇
  2016年   19篇
  2015年   9篇
  2014年   14篇
  2013年   22篇
  2012年   12篇
  2011年   26篇
  2010年   14篇
  2009年   16篇
  2008年   12篇
  2007年   14篇
  2006年   14篇
  2005年   12篇
  2004年   12篇
  2003年   13篇
  2002年   10篇
  2001年   6篇
  2000年   9篇
  1999年   11篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   7篇
  1994年   5篇
  1993年   7篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   4篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有360条查询结果,搜索用时 17 毫秒
351.
352.
This paper is a discussion of Rhoads and Kenworthy (1998) ‘Time-averaged flow structure in the central region of a stream confluence’ Earth Surface Processes and Landforms, 23 , 171–191, that focuses upon the methods used to identify secondary circulation in river channel confluences. It argues that the Rozovskii method that Rhoads and Kenworthy use to rotate their field data to allow identification of secondary circulation cells is flawed, and can result in misleading conclusions about the nature of flow processes in confluences. It recommends that there is a re-emphasis upon helical as opposed to secondary circulation, and that recent developments in both field monitoring and numerical modelling may help significantly in this respect. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
353.
Bed shear stress in open channel flows is often estimated from the logarithmic vertical velocity profile. However, most measuring devices used in the field do not allow for flow velocity to be measured very close to the bed. The lack of near-bed measurements is a critical loss of information which may affect bed shear stress estimates. Detailed velocity profiles obtained from a field acoustic Doppler velocimeter over three different bed roughnesses clearly show that the inclusion of near-bed points is critical for the estimation of bed shear stress in a shallow river environment. Moreover, the results indicate that using the full flow depth instead of the bottom 20 per cent of the profile generates an underestimation of the shear stress when flow is uniform. © 1998 John Wiley & Sons, Ltd.  相似文献   
354.
Forest species composition may change following a disturbance. This change can affect long term water yield from forested catchments when the replaced and replacement species have different evapotranspiration rates. Following strip‐thinning experiments that removed 50% of the overstorey basal area in several Eucalyptus regnans water supply catchments in south eastern Australia, Acacia spp. (Acacia dealbata and Acacia melanoxylon) became the dominant overstorey species in most of the cut strips. More recently, low regeneration of E. regnans following wildfires in 2009 may result in mixed Acacia and E. regnans stands in some catchments. We compared transpiration of E. regnans and Acacia stands in the uncut and cut strips of a catchment that was strip‐thinned in early 1980s (Crotty Creek). We also compared transpiration and throughfall in a mixed E. regnansA. dealbata regrowth stand 20 years after clear‐fell logging (Road 8). Sap flow was measured for 13 and 6 months at Crotty Creek and Road 8, respectively. In both studies, mean daily sap flow density of Acacia spp. was lower than of E. regnans. Estimated Leaf Area Index of E. regnans stands was slightly greater than that of Acacia spp. Stomatal conductance (gc), estimated by inverting the Penman–Monteith equation, differed between the species suggesting species‐level physiological differences with Acacia being more sensitive to vapour pressure deficit than E. regnans. Throughfall measurements at Road 8 indicated interception was slightly higher in A. dealbata but only enough to offset about 13% of the difference in transpiration. Replacement of E. regnans by Acacia dominated stands may, therefore, decrease catchment evapotranspiration and increase streamflow.  相似文献   
355.
Submerged aquatic vegetation affects flow, sediment and ecological processes within rivers. Quantifying these effects is key to effective river management. Despite a wealth of research into vegetated flows, the detailed flow characteristics around real plants in natural channels are still poorly understood. Here we present a new methodology for representing vegetation patches within computational fluid dynamics (CFD) models of vegetated channels. Vegetation is represented using a Mass Flux Scaling Algorithm (MFSA) and drag term within the Reynolds‐averaged Navier–Stokes Equations, which account for the mass and momentum effects of the vegetation, respectively. The model is applied using three different grid resolutions (0.2, 0.1 and 0.05 m) using time‐averaged solution methods and compared to field data. The results show that the model reproduces the complex spatial flow heterogeneity within the channel and that increasing the resolution leads to enhanced model accuracy. Future applications of the model to the prediction of channel roughness, sedimentation and key eco‐hydraulic variables are presented, likely to be valuable for informing effective river management. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
356.
Connectivity describes the efficiency of material transfer between geomorphic system components such as hillslopes and rivers or longitudinal segments within a river network. Representations of geomorphic systems as networks should recognize that the compartments, links, and nodes exhibit connectivity at differing scales. The historical underpinnings of connectivity in geomorphology involve management of geomorphic systems and observations linking surface processes to landform dynamics. Current work in geomorphic connectivity emphasizes hydrological, sediment, or landscape connectivity. Signatures of connectivity can be detected using diverse indicators that vary from contemporary processes to stratigraphic records or a spatial metric such as sediment yield that encompasses geomorphic processes operating over diverse time and space scales. One approach to measuring connectivity is to determine the fundamental temporal and spatial scales for the phenomenon of interest and to make measurements at a sufficiently large multiple of the fundamental scales to capture reliably a representative sample. Another approach seeks to characterize how connectivity varies with scale, by applying the same metric over a wide range of scales or using statistical measures that characterize the frequency distributions of connectivity across scales. Identifying and measuring connectivity is useful in basic and applied geomorphic research and we explore the implications of connectivity for river management. Common themes and ideas that merit further research include; increased understanding of the importance of capturing landscape heterogeneity and connectivity patterns; the potential to use graph and network theory metrics in analyzing connectivity; the need to understand which metrics best represent the physical system and its connectivity pathways, and to apply these metrics to the validation of numerical models; and the need to recognize the importance of low levels of connectivity in some situations. We emphasize the value in evaluating boundaries between components of geomorphic systems as transition zones and examining the fluxes across them to understand landscape functioning. © 2018 John Wiley & Sons, Ltd.  相似文献   
357.
Images from specially-commissioned aeroplane sorties (manned aerial vehicle, MAV), repeat unmanned aerial vehicle (UAV) surveys, and Planet CubeSat satellites are used to quantify dune and bar dynamics in the sandy braided South Saskatchewan River, Canada. Structure-from-Motion (SfM) techniques and application of a depth-brightness model are used to produce a series of Digital Surface Models (DSMs) at low and near-bankfull flows. A number of technical and image processing challenges are described that arise from the application of SfM in dry and submerged environments. A model for best practice is presented and analysis suggests a depth-brightness model approach can represent the different scales of bedforms present in sandy braided rivers with low-turbidity and shallow (< 2 m deep) water. The aerial imagery is used to quantify the spatial distribution of unit bar and dune migration rate in an 18 km reach and three ~1 km long reaches respectively. Dune and unit bar migration rates are highly variable in response to local variations in planform morphology. Sediment transport rates for dunes and unit bars, obtained by integrating migration rates (from UAV) with the volume of sediment moved (from DSMs using MAV imagery) show near-equivalence in sediment flux. Hence, reach-based sediment transport rate estimates can be derived from unit bar data alone. Moreover, it is shown that reasonable estimates of sediment transport rate can be made using just unit bar migration rates as measured from 2D imagery, including from satellite images, so long as informed assumptions are made regarding average bar shape and height. With recent availability of frequent, repeat satellite imagery, and the ease of undertaking repeat MAV and UAV surveys, for the first time, it may be possible to provide global estimates of bedload sediment flux for large or inaccessible low-turbidity rivers that currently have sparse information on bedload sediment transport rates. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
358.
359.
Unmanned aerial vehicles (UAVs) and structure-from-motion photogrammetry enable detailed quantification of geomorphic change. However, rigorous precision-based change detection can be compromised by survey accuracy problems producing systematic topographic error (e.g. ‘doming’), with error magnitudes greatly exceeding precision estimates. Here, we assess survey sensitivity to systematic error, directly correcting topographic data so that error magnitudes align more closely with precision estimates. By simulating conventional grid-style photogrammetric aerial surveys, we quantify the underlying relationships between survey accuracy, camera model parameters, camera inclination, tie point matching precision and topographic relief, and demonstrate a relative insensitivity to image overlap. We show that a current doming-mitigation strategy of using a gently inclined (<15°) camera can reduce accuracy by promoting a previously unconsidered correlation between decentring camera lens distortion parameters and the radial terms known to be responsible for systematic topographic error. This issue is particularly relevant for the wide-angle cameras often integrated into current-generation, accessible UAV systems, frequently used in geomorphic research. Such systems usually perform on-board image pre-processing, including applying generic lens distortion corrections, that subsequently alter parameter interrelationships in photogrammetric processing (e.g. partially correcting radial distortion, which increases the relative importance of decentring distortion in output images). Surveys from two proglacial forefields (Arolla region, Switzerland) showed that results from lower-relief topography with a 10°-inclined camera developed vertical systematic doming errors > 0·3 m, representing accuracy issues an order of magnitude greater than precision-based error estimates. For higher-relief topography, and for nadir-imaging surveys of the lower-relief topography, systematic error was < 0·09 m. Modelling and subtracting the systematic error directly from the topographic data successfully reduced error magnitudes to values consistent with twice the estimated precision. Thus, topographic correction can provide a more robust approach to uncertainty-based detection of event-scale geomorphic change than designing surveys with small off-nadir camera inclinations and, furthermore, can substantially reduce ground control requirements. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
360.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号