首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   33篇
  国内免费   1篇
测绘学   10篇
大气科学   15篇
地球物理   104篇
地质学   108篇
海洋学   30篇
天文学   72篇
自然地理   43篇
  2024年   1篇
  2022年   3篇
  2021年   8篇
  2020年   12篇
  2019年   10篇
  2018年   21篇
  2017年   15篇
  2016年   18篇
  2015年   12篇
  2014年   9篇
  2013年   20篇
  2012年   16篇
  2011年   29篇
  2010年   16篇
  2009年   24篇
  2008年   18篇
  2007年   15篇
  2006年   13篇
  2005年   9篇
  2004年   12篇
  2003年   10篇
  2002年   14篇
  2001年   9篇
  2000年   11篇
  1999年   1篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   6篇
  1982年   4篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1975年   5篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
排序方式: 共有382条查询结果,搜索用时 15 毫秒
21.
Predicting the future response of ice sheets to climate warming and rising global sea level is important but difficult. This is especially so when fast-flowing glaciers or ice streams, buffered by ice shelves, are grounded on beds below sea level. What happens when these ice shelves are removed? And how do the ice stream and the surrounding ice sheet respond to the abruptly altered boundary conditions? To address these questions and others we present new geological, geomorphological, geophysical and geochronological data from the ice-stream-dominated NW sector of the last British–Irish Ice Sheet (BIIS). The study area covers around 45 000 km2 of NW Scotland and the surrounding continental shelf. Alongside seabed geomorphological mapping and Quaternary sediment analysis, we use a suite of over 100 new absolute ages (including cosmogenic-nuclide exposure ages, optically stimulated luminescence ages and radiocarbon dates) collected from onshore and offshore, to build a sector-wide ice-sheet reconstruction combining all available evidence with Bayesian chronosequence modelling. Using this information we present a detailed assessment of ice-sheet advance/retreat history, and the glaciological connections between different areas of the NW BIIS sector, at different times during the last glacial cycle. The results show a highly dynamic, partly marine, partly terrestrial, ice-sheet sector undergoing large size variations in response to sub-millennial-scale climatic (Dansgaard–Oeschger) cycles over the last 45 000 years. Superimposed on these trends we identify internally driven instabilities, operating at higher frequency, conditioned by local topographic factors, tidewater dynamics and glaciological feedbacks during deglaciation. Specifically, our new evidence indicates extensive marine-terminating ice-sheet glaciation of the NW BIIS sector during Greenland Stadials 12 to 9 – prior to the main ‘Late Weichselian’ ice-sheet glaciation. After a period of restricted glaciation, in Greenland Interstadials 8 to 6, we find good evidence for rapid renewed ice-sheet build-up in NW Scotland, with the Minch ice-stream terminus reaching the continental shelf edge in Greenland Stadial 5, perhaps only briefly. Deglaciation of the NW sector took place in numerous stages. Several grounding-zone wedges and moraines on the mid- and inner continental shelf attest to significant stabilizations of the ice-sheet grounding line, or ice margin, during overall retreat in Greenland Stadials 3 and 2, and to the development of ice shelves. NW Lewis was the first substantial present-day land area to deglaciate, in the first half of Greenland Stadial 3 at a time of globally reduced sea-level c. 26 kabp , followed by Cape Wrath at c. 24 kabp. The topographic confinement of the Minch straits probably promoted ice-shelf development in early Greenland Stadial 2, providing the ice stream with additional support and buffering it somewhat from external drivers. However, c. 20–19 kabp , as the grounding-line migrated into shoreward deepening water, coinciding with a marked change in marine geology and bed strength, the ice stream became unstable. We find that, once underway, grounding-line retreat proceeded in an uninterrupted fashion with the rapid loss of fronting ice shelves – first in the west, then the east troughs – before eventual glacier stabilization at fjord mouths in NW Scotland by ~17 kabp. Around the same time, ~19–17 kabp , ice-sheet lobes readvanced into the East Minch – possibly a glaciological response to the marine-instability-triggered loss of adjacent ice stream (and/or ice shelf) support in the Minch trough. An independent ice cap on Lewis also experienced margin oscillations during mid-Greenland Stadial 2, with an ice-accumulation centre in West Lewis existing into the latter part of Heinrich Stadial 1. Final ice-sheet deglaciation of NW mainland Scotland was punctuated by at least one other coherent readvance at c. 15.5 kabp , before significant ice-mass losses thereafter. At the glacial termination, c. 14.5 kabp , glaciers fed outwash sediment to now-abandoned coastal deltas in NW mainland Scotland around the time of global Meltwater Pulse 1A. Overall, this work on the BIIS NW sector reconstructs a highly dynamic ice-sheet oscillating in extent and volume for much of the last 45 000 years. Periods of expansive ice-sheet glaciation dominated by ice-streaming were interspersed with periods of much more restricted ice-cap or tidewater/fjordic glaciation. Finally, this work indicates that the role of ice streams in ice-sheet evolution is complex but mechanistically important throughout the lifetime of an ice sheet – with ice streams contributing to the regulation of ice-sheet health but also to the acceleration of ice-sheet demise via marine ice-sheet instabilities.  相似文献   
22.
The Reduced Emissions from Deforestation and forest Degradation (REDD+) mechanism of a future post-2012 global climate-change treaty would aim to give incentive to tropical countries to reduce deforestation and thus forest-carbon emissions. It would do so by crediting tropical countries for reducing deforestation relative to a baseline scenario describing carbon emissions and removals from forest-cover change expected in the absence of REDD+. Defining a credible and accurate baseline is both critical and challenging. One approach considered promising is spatial modelling to project forest-cover change on the basis of historical trends; yet few such projections have been validated at a national scale. We develop and validate a novel GEOMOD projection of forest-cover change in Panama over 2000–2008, based on trends over 1990–2000 and 25 drivers of forest-cover change. Compared with the actual landscape of 2008, our projection is 85.2% accurate at a 100-m pixel resolution. More error is attributable to the location of projected forest (8.6%) than to its area (6.2%). Accuracy was least where forest regeneration predominated (80%), and greatest where deforestation predominated (90%). Despite the sophistication of our projection, it is slightly less accurate than if we had assumed no forest-cover change over 2000–2008. We identify factors limiting projection accuracy, including the complexity of forest-cover change, the spatial variability of forest-carbon density, and the relatively small area of change at the national scale. We conclude that, with the exception of contexts where forest-cover change is significant and straightforward and where forest-carbon density relatively uniform (e.g., agricultural frontiers), spatially projected baselines are of limited value for REDD+ – their accuracy is too limited given their relative lack of transparency. Simpler, relatively coarse scale, retrospective baselines are recommended instead.  相似文献   
23.
This paper describes a constitutive approach to model the behavior of rate‐dependent anisotropic structured clay. Rate‐sensitivity is modeled using overstress viscoplasticity. Clay structure is treated as a viscous phenomenon whereby the viscosity of the undisturbed structured clay is initially very high and the viscosity degrades or decreases with plastic straining until the intrinsic or residual viscosity is reached. A microstructure tensor approach is used to make the structured viscosity anisotropic; whereas, the intrinsic viscosity is assumed to be isotropic. The behavior of the constitutive model is compared with the measured response of two clays (Gloucester and St. Vallier clay) from Eastern Canada during triaxial compression tests on specimens trimmed at different orientations to the vertical. The comparisons show that the constitutive framework is able to describe the anisotropic and rate‐sensitive response of both clays. The response of the model is also examined for the more general case of anisotropic consolidated triaxial compression and extension. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
24.
25.
Ideas of complexity theory – including self-organized criticality – are being applied to the study of turbulence and astroplasmas in the solar system. An RAS MIST meeting in London brought together researchers from different disciplines to compare established paradigms with more recent ideas. Sandra Chapman , Mervyn Freeman and Sean Oughton report.  相似文献   
26.
This paper presents the results of a movable‐boundary, distorted, Froude‐scaled hydraulic model based on Abiaca Creek, a sand‐bedded channel in northern Mississippi. The model was used to examine the geomorphic and hydraulic impact of simplified large woody debris (LWD) elements. The theory of physical scale models is discussed and the method used to construct the LWD test channel is developed. The channel model had bed and banks moulded from 0·8 mm sand, and flow conditions were just below the threshold of motion so that any sediment transport and channel adjustment were the result of the debris element. Dimensions and positions of LWD elements were determined using a debris jam classification model. Elements were attached to a dynamometer to measure element drag forces, and channel adjustment was determined through detailed topographic surveys. The fluid drag force on the elements decreased asymptotically over time as the channel boundary eroded around the elements due to locally increased boundary shear stress. Total time for geomorphic adjustment computed for the prototype channel at the Q2 discharge (discharge occurring once every two years on average) was as short as 45 hours. The size, depth and position of scour holes, bank erosion and bars created by flow acceleration past the elements were found to be related to element length and position within the channel cross‐section. Morphologies created by each debris element in the model channel were comparable with similar jams observed in the prototype channel. Published in 2001 John Wiley & Sons, Ltd.  相似文献   
27.
Most, if not all forests in the Caribbean are subject to occasional disturbances from hurricanes. If current general circulation model (GCM) predictions are correct, with doubled atmospheric CO2 (2 × CO2), the tropical Atlantic will be between 1 °C and 4 °C warmer than it is today. With such a warming, more than twice as many hurricanes per year could be expected in the Caribbean. Furthermore, Emanuael (1987) indicates that in a warmed world the destructive potential of Atlantic hurricanes could be increased by 40% to 60%. While speculative, these increases would dramatically change the disturbance regimes affecting tropical forests in the region and might alter forest structure and composition. Global warming impacts through increased hurricane damage on Caribbean forests are presented.An individual tree, gap dynamics forest ecosystem model was used to simulate the range of possible hurricane disturbance regimes which could affect the Luquillo Experimental Forest in Puerto Rico. Model storm frequency ranged from no storms at all up to one storm per year; model storm intensity varied from no damage up to 100% mortality of trees. The model does not consider the effects of changing temperature and rainfall patterns on the forest. Simulation results indicate that with the different hurricane regimes a range of forest types are possible, ranging from mature forest with large trees, to an area in which forest trees are never allowed to reach maturity.  相似文献   
28.
Weathering rinds, zones of alteration on the exterior surfaces of rock outcrops and coarse unconsolidated surficial debris are widely used by geomorphologists and Quaternary geologists as indicators of the relative age of landforms and landscapes. Additionally they provide unique insights into the earliest stages of rock and mineral weathering, yet the origin of these alteration zones is relatively poorly understood. This lack of understanding applies especially to the initial stages of rind formation. The study reported in this paper has two principal objectives. The first is to use lightly polished granite discs inserted in soil profiles under several different plant communities in an Arctic alpine environment for a period of four or five years to investigate the nature of incipient weathering rind development. The second is to investigate the factors responsible for spatial variability in the nature and rates of rind formation. Incipient weathering rind development on the outer edges of the granite discs is observable and measurable over a period of time as short as four years in the mild Arctic alpine environment of Swedish Lapland. The earliest stages of rind development involve the development of a porous structure consisting of a combination of pits and fractures which have been solutionally enlarged and modified. Solution appears to be preferentially concentrated on the surfaces of feldspars and, to a lesser extent, quartz. In addition, iron oxides are present along grain boundaries and in grain interiors and are interpreted to have been derived from the oxidation of ferromagnesian minerals. Spatial variability in weathering rind development appears to be particularly driven by differences in moisture but is not related to soil pH. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
29.
Low frequencies are necessary in seismic data for proper acoustic impedance imaging and for petrophysical interpretation. Without lower frequencies, images can be distorted leading to incorrect reservoir interpretation and petrophysical predictions. As part of the Foinaven Active Reservoir Management (FARM) project, a Towed Streamer survey and an Ocean Bottom Hydrophone (OBH) survey were shot in both 1995 and 1998. The OBH surveys contain lower frequencies than the streamer surveys, providing a unique opportunity to study the effects that low frequencies have on both the acoustic impedance image along with petrophysical time‐lapse predictions. Artefacts that could easily have been interpreted as high‐resolution features in the streamer data impedance volumes can be distinguished by comparison with the impedance volumes created from the OBH surveys containing lower frequencies. In order to obtain results from the impedance volumes, impedance must be related to saturation. The mixing of exsolved gas, oil and water phases involves using the Reuss (uniform) or Voigt (patchy approximation) mixing laws. The Voigt average is easily misused by assuming that the end‐points correspond to 0% and 100% gas saturation. This implies that the patches are either 0% gas saturation or 100% gas saturation, which is never the case. Here, the distribution of gas as it comes out of solution is assumed to be uniform until the gas saturation reaches a sufficiently high value (critical gas saturation) to allow gas to flow. Therefore, at low gas saturations the distribution is uniform, but at saturations above critical, it is patchy, with patches that range from critical gas saturation to the highest gas saturation possible (1 minus residual oil and irreducible water saturation).  相似文献   
30.
The top of the olivine-spinel phase change in subducted oceanic lithosphere can be located by the travel times of seismic waves which have propagated through the slab. P-wave travel-time residuals from deep earthquakes in the Tonga island are observed at Australian seismic stations are grouped according to the depth of the earthquake. The change in mean residual with a change in earthquake depth is related to the velocity contrast between slab and normal mantle at that depth. The curve mean residual versus earthquake depth displays a region of markedly increased slope between earthquake depths of about 250 and 350 km. The most probable explanation of this observation is an elevation by 100 km of the olivine-spinel phase change within the relatively cooler slab. No evidence was found for vertical displacements within the slab of any deeper phase changes.A temperature contrast between slab and normal mantle of about 1,000°C at 250 km depth is implied. This finding confirms current thermal models for subducted lithosphere but is inconsistent with the global intraplate stress field unless only a few percent of the negative buoyancy force at subduction zones is transmitted to the surface plates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号