首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   18篇
  国内免费   2篇
测绘学   4篇
大气科学   27篇
地球物理   68篇
地质学   89篇
海洋学   24篇
天文学   15篇
综合类   1篇
自然地理   21篇
  2024年   1篇
  2022年   2篇
  2021年   6篇
  2020年   6篇
  2019年   10篇
  2018年   12篇
  2017年   7篇
  2016年   15篇
  2015年   9篇
  2014年   8篇
  2013年   32篇
  2012年   18篇
  2011年   25篇
  2010年   13篇
  2009年   16篇
  2008年   11篇
  2007年   6篇
  2006年   13篇
  2005年   10篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
201.
There is considerable interest in how headwater management may influence downstream flood peaks in temperate humid regions. However, there is a dearth of data on flow velocities across headwater hillslopes and limited understanding of whether surface flow velocity is influenced by seasonal changes in roughness through vegetation cycles or management. A portable hillslope flume was used to investigate overland flow velocities for four common headwater grassland habitats in northern England: Low-density Grazing, Hay Meadow, Rank Grassland and Juncus effusus Rush pasture. Overland flow velocity was measured in replicate plots for each habitat, in response to three applied flow rates, with the experiments repeated during five different periods of the annual grassland cycle. Mean annual overland flow velocity was significantly lower for the Rank Grassland habitat (0.026 m/s) followed by Low-density Grazing and Rushes (0.032 and 0.029 m/s), then Hay Meadows (0.041 m/s), which had the greatest mean annual velocity (examples from 12 L/min flow rate). Applying our mean overland flow velocities to a theoretical 100 m hillslope suggests overland flow is delayed by >1 hr on Rank Grassland when compared to Hay Meadows in an 18 mm storm. Thus grassland management is important for slowing overland flow and delaying peak flows across upland headwaters. Surface roughness was also strongly controlled by annual cycles of vegetation growth, decay, grazing and cutting. Winter overland flow velocities were significantly higher than in summer, varying between 0.004 m/s (Rushes, November) and 0.034 m/s (Rushes, June); and velocities significantly increased after cutting varying between 0.006 m/s (Hay meadows, July) and 0.054 m/s (Hay meadows, September). These results show that seasonal vegetation change should be incorporated into flood modelling, as cycles of surface roughness in grasslands strongly modify overland flow, potentially having a large impact on downstream flood peak and timing. Our data also showed that Darcy-Weisbach roughness approximations greatly over-estimated measured flow velocities.  相似文献   
202.
Temporal and spatial patterns of variability in Puget Sound's oceanographic properties are determined using continuous vertical profile data from two long-term monitoring programs; monthly observations at 16 stations from 1993 to 2002, and biannual observations at 40 stations from 1998 to 2003. Climatological monthly means of temperature, salinity, and density reveal strong seasonal patterns. Water temperatures are generally warmest (coolest) in September (February), with stations in shallow finger inlets away from mixing zones displaying the largest temperature ranges. Salinities and densities are strongly influenced by freshwater inflows from major rivers during winter and spring from precipitation and snowmelt, respectively, and variations are greatest in the surface waters and at stations closest to river mouths. Vertical density gradients are primarily determined by salinity variations in the surface layer, with stations closest to river mouths most frequently displaying the largest buoyancy frequencies at depths of approximately 4–6 m. Strong tidal stirring and reflux over sills at the entrance to Puget Sound generally removes vertical stratification. Mean summer and winter values of oceanographic properties reveal patterns of spatial connectivity in Puget Sound's three main basins; Whidbey Basin, Hood Canal, and Main Basin. Surface waters that are warmed in the summer are vertically mixed over the sill at Admiralty Inlet and advected at depth into Whidbey Basin and Hood Canal. Cooler and fresher surface waters cap these warmer waters during winter, producing temperature inversions.  相似文献   
203.
The Turkey Lakes Watershed (TLW) study is a federal, interdepartmental study established in 1979 to investigate the effects of acid rain on terrestrial and aquatic ecosystems. The 10.5 km2 watershed, located in the Eastern Temperate Mixed Forest on the Canadian Shield, has been the site of multidisciplinary studies on biogeochemical and ecological processes conducted across plot to catchment scales. The whole-ecosystem investigative approach was adopted from the outset and has allowed research to evolve from its original (and continuing) acidification focus to include investigations on the effects of climate change, forest harvesting and other forest ecosystem perturbations. The extensive scientific and support infrastructure allows for collection of a comprehensive data record essential for understanding long-term environmental trends. Data include atmospheric deposition, meteorology, stream hydrology and chemistry, soil, pore and ground water properties, understory and overstory vegetation, lake and outflow physical and chemical properties, and aquatic macroinvertebrate and fish community composition and abundance. These data have contributed to over 400 published research papers and graduate theses. The watershed has also figured prominently in many continent-wide comparisons advancing fundamental watershed theory. The knowledge gained at TLW has influenced pollutant emission and natural resource management policies provincially, nationally and internationally.  相似文献   
204.
205.
Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.  相似文献   
206.
Coral reefs of the Turks and Caicos Islands (TCIs) (Caribbean Sea) constitute some of the few pristine coral reef systems in the world and play a crucial role in the islands’ economy because they support rich fisheries catches and tourism development. Ambitious development plans involving increase in fishing and tourism pressures are about to bring changes in coastal zone resources of the TCIs associated with increased sediments and nutrients and reduced predation by herbivorous fish on coral reefs. Understanding change is critical when attempting to protect the resources that these coral reefs support and to adopt proper management strategies. Yet, an environmental assessment program to detect imminent human‐induced changes on the surrounding reefs of the TCIs is lacking. Thus, (i) we obtained baseline data on benthic composition and coral community structure at seven reef sites of representative reefs of the TCIs within the Admiral Cockburn Land and Sea National Park (ACLSNP) of South Caicos Island and (ii) performed a priori statistical power analysis to calculate replication requirements for safely and confidently detecting small (δ = 0.1), medium (δ = 0.3), and large (δ = 0.5) effect sizes for a number of relevant to anticipated changes, univariate, benthic indices and for power β = 0.95. The platforms of the margin reefs studied (9–12 m depth) appeared rather variable regarding benthic composition but quite homogeneous regarding hard coral community structure. Mean percent cover of algal functional groups was 0.1 ± 0.3 (mean ± sd) percent for coralline algae and Halimeda, 0.1 ± 0.6 (mean ± sd) percent for macroalgae, 21.7 ± 33 (mean ± sd) percent for turf algae and 4.8 ± 4.0 (mean ± sd) percent for hard coral cover. The dominant benthic component, however, was carbonate substrate (mean ± sd = 30.4 ± 34.3), thus indicating an accreting reef framework. Mean hard coral density, colony size and recruit density were 5.5 ± 1.8 (mean ± sd) corals per 20‐m line transect, 13.0 ± 2.3 (mean ± sd) cm maximum colony diameter, and 1.3 ± 1.4 (mean ± sd) recruits per square foot, respectively. Due to high natural variance, hard coral colony size and density were practically the most sensitive indices in detecting even small size changes on benthos. Also, the geometric mean of log‐transformed colony size‐frequency distributions of the most abundant hard coral taxa, i.e. Montastrea annularis, Agaricia spp., Siderastrea spp. and Porites asteroides were practically sensitive for the same purpose. We hope that the study will optimize the spatial component of a necessary environmental impact assessment program on coral reefs of the TCIs once the natural spatial variability of the system has been assessed and sensitive, benthic, univariate indices have been identified for representative reference coral reef sites of the TCIs.  相似文献   
207.
The Paris Agreement establishes provisions for using international carbon market mechanisms to achieve climate mitigation contributions. Environmental integrity is a key principle for using such mechanisms under the Agreement. This paper systematically identifies and categorizes issues and options to achieve environmental integrity, including how it could be defined, what influences it, and what approaches could mitigate environmental integrity risks. Here, environmental integrity is assumed to be ensured if the engagement in international transfers of carbon market units leads to the same or lower aggregated global emissions. Four factors are identified that influence environmental integrity: the accounting for international transfers; the quality of units generated, i.e. whether the mechanism ensures that the issuance or transfer of units leads to emission reductions in the transferring country; the ambition and scope of the mitigation target of the transferring country; and incentives or disincentives for future mitigation action, such as possible disincentives for transferring countries to define future mitigation targets less ambitiously or more narrowly in order to sell more units. It is recommended that policy-makers combine several approaches to address the significant risks to environmental integrity.

Key policy insights

  • Robust accounting is a key prerequisite for ensuring environmental integrity. The diversity of nationally determined contributions is an important challenge, in particular for avoiding double counting and for ensuring that the accounting for international transfers is representative for the mitigation efforts by Parties over time.

  • Unit quality can, in theory, be ensured through appropriate design of carbon market mechanisms; in practice, existing mechanisms face considerable challenges in ensuring unit quality. Unit quality could be promoted through guidance under Paris Agreement Article 6, and reporting and review under Article 13.

  • The ambition and scope of mitigation targets is key for the incentive for transferring countries to ensure unit quality because countries with ambitious and economy-wide targets would have to compensate for any transfer of units that lack quality. Encouraging countries to adopt ambitious and economy-wide NDC targets would therefore facilitate achieving environmental integrity.

  • Restricting transfers in instances of high environmental integrity risk – through eligibility criteria or limits – could complement these approaches.

  相似文献   
208.
Ureolysis-driven calcite precipitation has potential to seal porosity and fracture networks in rocks thus preventing groundwater flow and contaminant transport. In this study urea hydrolysis and calcite precipitation rates for the model bacterium Sporosarcina pasteurii were compared with those of indigenous groundwater communities under conditions required to precipitate large volumes of calcite (up to 50 g L−1). We conducted microcosm experiments in oxic artificial and anoxic natural groundwaters (collected from the Permo-Triassic sandstone aquifer at Birmingham, UK) that were inoculated with aerobically grown S. pasteurii. The rate constants for urea hydrolysis, kurea, ranged between 0.06 and 3.29 d−1 and were only affected by inoculum density. Higher Ca2+ concentration (50-500 mM Ca2+) as well as differences in fO2 did not inhibit the ureolytic activity of S. pasteurii and did not significantly impact kurea. These results demonstrate that S. pasteurii has potential to improve calcite precipitation in both oxic and anoxic groundwaters, especially if indigenous communities lack ureolytic activity. Urea hydrolysis by indigenous groundwater communities was investigated in anoxic, natural groundwaters amended with urea and CaCl2. A notable increase in ureolysis rates was measured only when these communities were stimulated with dilute nutrients (with best results from blackstrap molasses). Furthermore, there was a considerable lag time (12-20 days) before ureolysis and calcite precipitation began. Calculated ureolysis rate constants, kurea, ranged between 0.03 and 0.05 d−1 and were similar to kurea values produced by S. pasteurii at low inoculum densities. Overall, this comparative study revealed that the growth of ureolytic microorganisms present within groundwaters can easily be stimulated to enhance rates of urea hydrolysis in the subsurface, and thus can be used to induce calcite precipitation in these environments. The time required for urea hydrolysis to begin is almost instantaneous if an inoculum of S. pasteurii is included, while it may take several weeks for ureolytic groundwater communities to grow and become ureolytically active.  相似文献   
209.
210.
The type section silts of the late Pleistocene Wilson Creek Formation at Mono Lake contain outsized clasts, dominantly well-rounded pebbles and cobbles of Sierran lithologies. Lithic grains > 425 μm show a similar pattern of variability as the > 10 mm clasts visible in the type section, with decreasing absolute abundance in southern and eastern outcrops. The largest concentrations of ice-rafted debris (IRD) occur at 67–57 ka and 46–32 ka, with strong millennial-scale variability, while little IRD is found during the last glacial maximum and deglaciation.Stratigraphic evidence for high lake level during high IRD intervals, and a lack of geomorphic evidence for coincidence of lake and glaciers, strongly suggests that rafting was by shore ice rather than icebergs. Correspondence of carbonate flux and IRD implies that both were mainly controlled by freshwater input, rather than disparate non-climatic controls. Conversely, the lack of IRD during the last glacial maximum and deglacial highstands may relate to secondary controls such as perennial ice cover or sediment supply. High IRD at Mono Lake corresponds to low glacial flour flux in Owens Lake, both correlative to high warm-season insolation. High-resolution, extra-basinal correlation of the millennial peaks awaits greatly improved age models for both records.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号