首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   17篇
  国内免费   9篇
测绘学   9篇
大气科学   31篇
地球物理   134篇
地质学   109篇
海洋学   41篇
天文学   64篇
综合类   4篇
自然地理   37篇
  2023年   2篇
  2021年   6篇
  2020年   6篇
  2019年   7篇
  2018年   11篇
  2017年   8篇
  2016年   19篇
  2014年   9篇
  2013年   13篇
  2012年   9篇
  2011年   25篇
  2010年   9篇
  2009年   18篇
  2008年   28篇
  2007年   25篇
  2006年   29篇
  2005年   19篇
  2004年   24篇
  2003年   15篇
  2002年   14篇
  2001年   4篇
  2000年   14篇
  1999年   5篇
  1998年   7篇
  1997年   5篇
  1995年   8篇
  1994年   4篇
  1993年   8篇
  1992年   3篇
  1991年   5篇
  1990年   6篇
  1989年   9篇
  1988年   8篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1984年   7篇
  1982年   2篇
  1981年   4篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
排序方式: 共有429条查询结果,搜索用时 15 毫秒
151.
The 1995 Northern Niigata Earthquake (M 6.0) occurred at a shallow depth in the Niigata seismic gap. The anomaly areas in temperature, electrical conductivity and Cl- concentration of groundwater trend northeast as linear distribution in the epicentral area and are approximately coincident with the area of the seismic intensity 6 (JMA scale). The distributions of seismic intensity 6 and groundwater anomalies convincingly imaged the presence of a buried active fault beneath the epicentral area. The occurrence of this earthquake and the anomalies of groundwater were related to the expulsion of geopressured hydrothermal system (GHS). All epicenters of the destructive earthquakes along the Shinanogawa seismic belt are actually located in the buried active fault zones characterized by the areas of temperature and geochemical anomalies of groundwater. These earthquakes might have been triggered by the activity of GHS. The expulsion of GHS along an active fault in combination with the thermal softening of fault  相似文献   
152.
153.
154.
Astrophysics and Space Science - Analysis of the radial velocity curves of 12 DD Lacertae showns that the primary period is decreasing and the secondary is almost constant, confirming the...  相似文献   
155.
Recent field observations have indicated that water saturation of soils may strongly affect the vertical ground motion. A study is therefore carried out to investigate the effect of saturation on horizontal and vertical motion at an interface of porous soils with potential contributions directed to site evaluation based on field observations of both the horizontal and vertical motion. The problem described in this paper corresponds to an SV wave incident at the interface between the overlying soil and the underlying rock formation. The soils are modeled as partially water-saturated porous material with a small amount of air inclusions, while the rock are approximately regarded as ordinary one-phase solid. Theoretical formulation is developed for the computation of amplitudes of horizontal and vertical interface motion, which are expressed as functions of the degree of saturation, the angle of incidence as well as the frequency. Numerical results are given for a typical sand to illustrate the influence of saturation on the interface motion in two directions and their ratios. The present study demonstrates that the effect of water saturation may be substantial on both the horizontal and vertical motion as well as on their ratios, implying the importance of such effects in the interpretation of field observations.  相似文献   
156.
Assessment of the vertical distribution on seismic ground motion   总被引:1,自引:0,他引:1  
It is very important for the facilities such as nuclear power plants to infer seismic force loading on the earthquake stability assessment of the building foundation and the surrounding slope. The purpose of this paper was to propose a method to evaluate underground seismic coefficients, taking into account dynamic response along the depth in horizontally multi-layered ground. The dynamic property of the seismic coefficient was analyzed on the basis of earthquake records observed at hard and soft rock sites mostly found in Tertiary deposits and sedimentary ground sites of the Pleistocene and Holocene epoch. The evaluation methods of a vertical distribution on underground seismic coefficients were proposed for a few calculation methods on the classified layered ground. Extended evaluation for underground seismic coefficients was confirmed with respect to some multi-layered ground during strong motion.  相似文献   
157.
Abstract Rb–Sr and Sm–Nd isochron ages were determined for whole rocks and mineral separates of hornblende‐gabbros and related metadiabases and quartz‐diorite from Shodoshima, Awashima and Kajishima islands in the Ryoke plutono‐metamorphic belt of the Setouchi area, Southwest Japan. The Rb–Sr and Sm–Nd whole‐rock‐mineral isochron ages for six samples range from 75 to 110 Ma and 200–220 Ma, respectively. The former ages are comparable with the Rb–Sr whole‐rock isochron ages reported from neighboring Ryoke granitic rocks and are thus due to thermal metamorphism caused by the granitic intrusions. On the contrary, the older ages suggest the time of formation of the gabbroic and related rocks. The initial 87Sr/86Sr and 143Nd/144Nd ratios of the gabbroic rocks (0.7070–0.7078 and 0.51217–0.51231 at 210 Ma, respectively) are comparable with those of neighboring late Cretaceous granites and lower crustal granulite xenoliths from Cenozoic andesites in this region. Because the gabbroic rocks are considered to be fragments of the lower crustal materials interlayered in the granulitic lower crust, their isotopic signature has been inherited from an enriched mantle source or, less likely, acquired through interaction with the lower crustal materials. The Sr and Nd isotopic and petrologic evidence leads to a plausible conclusion that the gabbroic rocks have formed as cumulates from hydrous mafic magmas of light rare earth element‐rich (Sm/Nd < 0.233) and enriched isotopic (?Sr > 0 and ?Nd < 0) signature, which possibly generated around 220–200 Ma by partial melting of an upper mantle. We further conclude that they are fragments of refractory material from the lower crust caught up as xenoblocks by granitic magmas, the latter having been generated by partial melting of granulitic lower crustal material around 100 Ma.  相似文献   
158.
159.
The ca. 2.2–2.1 Ga Magondi Supergroup on the Zimbabwe Craton in Southern Africa is mainly composed of sedimentary rocks deposited in a rift basin/passive continental margin, which record a unique episode in carbon isotope perturbation called the Lomagundi–Jatuli Event (LJE). This study reports new U–Pb ages of detrital zircons from the Deweras and Lomagundi groups of the Magondi Supergroup, and of igneous zircons from underlying granitoids, to constrain the timing of the LJE and to identify the provenance of the Magondi Supergroup. Most analysed detrital zircon grains range in ages between ca. 2.9 and 2.6 Ga. Three ca. 2.3–2.2 Ga detrital zircons from sandstone of the Deweras Group, with the youngest 207Pb‐206Pb age of 2,216 ± 22 Ma, indicate the onset of LJE in the Zimbabwe Craton was almost simultaneous to that in Fennoscandia and the Superior Craton, supporting the global synchronicity of the LJE.  相似文献   
160.
This study estimated the trends in the number of days that fall within the near-zero (0?°C) range of the temperature continuum. This narrow range has importance for potential transportation hazards and freeze-thaw cycles. While the tails of the air-temperature distribution and their trends often are closely examined under the climate change context, the frequency and trend of other portions of the air-temperature distribution can be equally important, as many societal impacts are caused by events in the non-tail region, such as near-zero °C temperatures (NZT). Examining the trend of the number of NZT days over the conterminous USA for the period of 1948–1949 through 2010–2011, we found three distinct spatial clusters. The most distinctive spatial clusters are found along the West Coast (positive temperature trends leading to a decrease in NZT days), the High Plains and Northern Rockies (positive temperature trends leading to an increase in NZT days), and the southeastern USA (negative temperature trends leading to an increase in NZT days). While trends in the number of NZT days are linked to changes in mean minimum air temperature, increasing minimum temperature leads to a positive trend at NZT days only at some locations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号