首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
地球物理   12篇
地质学   10篇
海洋学   2篇
自然地理   2篇
  2022年   1篇
  2020年   2篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1989年   2篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
21.
Prediction of snowmelt has become a critical issue in much of the western United States given the increasing demand for water supply, changing snow cover patterns, and the subsequent requirement of optimal reservoir operation. The increasing importance of hydrologic predictions necessitates that traditional forecasting systems be re-evaluated periodically to assure continued evolution of the operational systems given scientific advancements in hydrology. The National Weather Service (NWS) SNOW17, a conceptually based model used for operational prediction of snowmelt, has been relatively unchanged for decades. In this study, the Snow–Atmosphere–Soil Transfer (SAST) model, which employs the energy balance method, is evaluated against the SNOW17 for the simulation of seasonal snowpack (both accumulation and melt) and basin discharge. We investigate model performance over a 13-year period using data from two basins within the Reynolds Creek Experimental Watershed located in southwestern Idaho. Both models are coupled to the NWS runoff model [SACramento Soil Moisture Accounting model (SACSMA)] to simulate basin streamflow. Results indicate that while in many years simulated snowpack and streamflow are similar between the two modeling systems, the SAST more often overestimates SWE during the spring due to a lack of mid-winter melt in the model. The SAST also had more rapid spring melt rates than the SNOW17, leading to larger errors in the timing and amount of discharge on average. In general, the simpler SNOW17 performed consistently well, and in several years, better than, the SAST model. Input requirements and related uncertainties, and to a lesser extent calibration, are likely to be primary factors affecting the implementation of an energy balance model in operational streamflow prediction.  相似文献   
22.
Urbanization represents a dramatic example of human interference with the hydrological cycle. Changes to ground cover affect both the hydrological and geochemical characteristics in a watershed. Ecosystem degradation also occurs in undisturbed watersheds at the “urban fringe” due to regional atmospheric deposition. These urban fringe catchments can also serve as an upstream source of various chemical constituents into downstream (urban) river systems. The current study focuses on the impacts of regional urbanization in the upper Arroyo Seco watershed located on the eastern edge of the Los Angeles basin, where estimates of dry deposition are considered some of the highest in North America. Collected hydrologic, geochemical and atmospheric data were assessed at seasonal time scales to evaluate current hydrochemical dynamics. Stream water chemical composition in the upper Arroyo Seco watershed exhibits significant seasonal variability, particularly for . Almost all study solutes show dilution behavior. However, hydrologically enhanced behavior was observed for with increased concentrations during the wet season. Seasonal stream concentration–discharge relationships were developed using a hyperbolic dilution model. The developed model was then used to predict concentrations for observational gaps in stream water chemical composition, allowing for seasonal and annual mass loadings to be estimated for the downstream urban stream. The hydrological signal in the resultant chemical loads is extremely strong, especially during the wet season. Both observations and model predictions indicate the watershed is a sink for atmospheric nitrate and a source for various cations.  相似文献   
23.
The National Weather Service (NWS) uses the SNOW17 model to forecast snow accumulation and ablation processes in snow-dominated watersheds nationwide. Successful application of the SNOW17 relies heavily on site-specific estimation of model parameters. The current study undertakes a comprehensive sensitivity and uncertainty analysis of SNOW17 model parameters using forcing and snow water equivalent (SWE) data from 12 sites with differing meteorological and geographic characteristics. The Generalized Sensitivity Analysis and the recently developed Differential Evolution Adaptive Metropolis (DREAM) algorithm are utilized to explore the parameter space and assess model parametric and predictive uncertainty. Results indicate that SNOW17 parameter sensitivity and uncertainty generally varies between sites. Of the six hydroclimatic characteristics studied, only air temperature shows strong correlation with the sensitivity and uncertainty ranges of two parameters, while precipitation is highly correlated with the uncertainty of one parameter. Posterior marginal distributions of two parameters are also shown to be site-dependent in terms of distribution type. The SNOW17 prediction ensembles generated by the DREAM-derived posterior parameter sets contain most of the observed SWE. The proposed uncertainty analysis provides posterior parameter information on parameter uncertainty and distribution types that can serve as a foundation for a data assimilation framework for hydrologic models.  相似文献   
24.
25.
Observations from 17 ALVIN dives and 14 ANGUS runs plus laboratory study of basalt samples collected with ALVIN help to constrain the morphologic, volcanic and petrologic evolution of four seamounts near the East Pacific Rise (EPR). Comparison among the four volcanoes provides evidence for a general pattern of near-EPR seamount evolution and shows the importance of sedimentation, mass wasting, hydrothermal activity and other geologic processes that occur on submerged oceanic volcanoes. Seamount 5, closest to the EPR (1.0 Ma) is the youngest seamount and may still be active. Its summit is covered by fresh lavas, recent faults and hydrothermal deposits. Seamount D is on crust 1.55 Ma and is inactive; like seamount 5, it has a breached caldera and is composed exclusively of N-MORB. Seamounts 5 and D represent the last stages of growth of typical N-MORB-only seamounts near the EPR axis. Seamounts 6 and 7 have bumpy, flattish summits composed of transitional and alkalic lavas. These lavas probably represent caldera fillings and caps overlying an edifice composed of N-MORB. Evolution from N-MORB-only cratered edifices to the alkalic stage does not occur on all near-EPR seamounts and may be favored by location on structures with relative-motion-parallel orientation.  相似文献   
26.
The goal of the current study is to better understand the role of storm dynamics on stream water chemical variability in a highly polluted urban-fringe watershed. The study was conducted in the upper reach of the Arroyo Seco watershed located on the eastern edge of the densely urbanized Los Angeles basin in California. During the 2008–2009 study period, high-frequency stream water observations of chloride, fluoride, sulfate, and nitrate were monitored through a series of storm events and were compared to pre- and post-winter storm season geochemical soil profiles. Of the four solutes measured, nitrate demonstrated hydrologically enhanced behavior. Chloride, fluoride, and sulfate exhibited enhanced behavior initially (first flush), but transitioned to dilution behavior as the season progressed. Soil chemistry analyses in the riparian zone confirmed the abundance of nitrate on the soil surface, serving as a source for stream water nitrate. Observations and analyses collectively suggest that the chemical variability observed during the storms is dependent not only on discharge, but also on the magnitude and intensity of rainfall, the length of the antecedent dry period, and riparian soil composition. A further understanding of these factors will ultimately improve geochemical models for prediction of downstream chemical loads from regional urban-fringe watersheds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号