首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   8篇
  国内免费   5篇
测绘学   1篇
大气科学   20篇
地球物理   61篇
地质学   86篇
海洋学   35篇
天文学   49篇
自然地理   30篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   8篇
  2017年   3篇
  2016年   8篇
  2015年   7篇
  2014年   13篇
  2013年   25篇
  2012年   6篇
  2011年   12篇
  2010年   12篇
  2009年   13篇
  2008年   19篇
  2007年   18篇
  2006年   12篇
  2005年   11篇
  2004年   13篇
  2003年   10篇
  2002年   8篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   5篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1981年   7篇
  1980年   1篇
  1979年   5篇
  1978年   2篇
  1977年   4篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
排序方式: 共有282条查询结果,搜索用时 15 毫秒
111.
The magnesium isotopic compositions of 26 hibonite-bearing inclusions from the CM chondrite Murchison, as well as isotopic measurements on a subset of these samples for oxygen, titanium, and lithium-beryllium-boron are reported along with oxygen isotopic data for an additional 13 hibonites that were previously investigated for other isotope systems (magnesium, potassium, calcium, and titanium) and rare earth element concentrations. Magnesium isotopic compositions divide CM hibonites into two distinct populations which correlate perfectly with their mineralogy and morphology, as previously discovered by Ireland [Ireland T. R. (1988) Correlated morphological, chemical, and isotopic characteristics of hibonites from the Murchison carbonaceous chondrite. Geochim. Cosmochim. Acta52, 2827-2839]: Spinel-HIBonite spherules (SHIBs) bear evidence of in situ26Al decay, whereas PLAty-Crystals (PLACs) and Blue AGgregates (BAGs) either lack resolvable 26Mg-excesses or exhibit 26Mg deficits by up to ∼4‰. High precision, multiple collector SIMS analyses show that 6 of 7 SHIBs investigated fall on a single correlation line implying 26Al/27Al = (4.5 ± 0.2) × 10−5 at the time of isotopic closure, consistent with the “canonical” 26Al abundance characteristic of internal isochrons in many calcium-aluminum-rich inclusions (CAIs). One SHIB sample exhibits Δ26Mg consistent with a “supracanonical” 26Al/27Al ratio of (6.4 ± 0.5) × 10−5. The PLAC hibonites contain highly anomalous titanium isotopic compositions, with δ50Ti values ranging from −80‰ to almost +200‰, whereas SHIBs generally lack large Ti isotopic anomalies.Eight out of 11 26Al-free PLAC hibonite grains record 10B/11B excesses that correlate with Be/B; the inferred initial 10Be/9Be ratio of (5.1 ± 1.4) × 10−4 is lower than the best-constrained 10Be/9Be of (8.8 ± 0.6) × 10−4 in a CV CAI. The data demonstrate that 10Be cannot be used as a relative chronometer for these objects and that most of the 10Be observed in CAIs must be produced by irradiation of precursor solids in the early solar system. The lack of 26Al in PLAC hibonites indicates that significant amounts of 26Al were not formed in the same spallogenic processes that made 10Be in PLAC precursors. This is most easily understood as indicating very early formation of the PLAC hibonites, prior to the incorporation and mixing of 26Al into the solar nebula, although an alternative scenario, which invokes irradiation under different solar flare conditions, cannot be ruled out. Lithium isotopes are normal within uncertainties, probably reflecting contamination and/or postcrystallization exchange.The oxygen isotopic compositions of SHIBs and PLACs are all highly 16O-enriched, but are not derived from a homogeneous reservoir: Δ17O values span a range of ∼−28‰ to −15‰. The ranges of 16O-enrichment in SHIBs and PLACs overlap and are less “anomalous” than the most 16O-enriched compositions found in meteorites [Kobayashi S., Imai H. and Yurimoto H. (2003) New extreme 16O-rich chondrule in the early solar system. Geochem. J.37, 663-669]. Both PLACs and SHIBs formed in 16O-enriched reservoirs characterized by small-scale heterogeneities in the gas phase. If such heterogeneities were generated by an admixture of relatively 16O-poor gas created by self-shielding during CO photolysis and transported to the hot inner regions of the accretion disk, then this process must have been initiated very early on, prior to the arrival of fresh radioactivity into the inner solar system. Oxygen isotope heterogeneities persisted throughout the formation interval of PLACs, CAI precursors, and SHIBs which could be as long as 3 × 105 years based on 26Al records.One SHIB and one BAG exhibit mass fractionated oxygen isotopic compositions similar to those seen in FUN inclusions and in several platy hibonite crystals [Lee T., Mayeda T. K. and Clayton R. N. (1980) Oxygen isotopic anomalies in Allende inclusion HAL. Geophys. Res. Lett.7, 493-496; Ireland T. R., Zinner E. K., Fahey A. J. and Esat T. M. (1992) Evidence for distillation in the formation of HAL and related hibonite inclusions. Geochim. Cosmochim. Acta56, 2503-2520; Ushikubo T., Hiyagon H. and Sugiura N. (2007) A FUN-like hibonite inclusion with a large 26Mg-excess. Earth Planet. Sci. Lett.254, 115-126]. The suite of mass-fractionated hibonites exhibit a range of isotopic properties, including 26Al/27Al ratios from below detection to a “canonical” level and oxygen and titanium anomalies that are not exceptional by PLAC standards. This suggests that F (fractionation) processes—evaporation under (oxidizing) conditions—are not necessarily associated with sampling a special isotopic reservoir.  相似文献   
112.
We use a numerical model describing cosmogenic nuclide acquisition in sediment moving through the upper Gaub River catchment to evaluate the extent to which aspects of source area geomorphology and geomorphological processes can be inferred from frequency distributions of cosmogenic 21Ne (21Nec) concentrations in individual detrital grains. The numerical model predicts the pathways of sediment grains from their source to the outlet of the catchment and calculates the total 21Nec concentration that each grain acquires along its pathway. The model fully accounts for variations in nuclide production due to changes in latitude, altitude and topographic shielding and allows for spatially variable erosion and sediment transport rates. Model results show that the form of the frequency distribution of 21Nec concentrations in exported sediment is sensitive to the range and spatial distribution of processes operating in the sediment's source areas and that this distribution can be used to infer the range and spatial distribution of erosion rates that characterise the catchment. The results also show that lithology can affect the form of the 21Nec concentration distribution indirectly by exerting control on the spatial pattern of denudation in a catchment. Model results further indicate that the form of the distribution of 21Nec concentrations in the exported sediment can also be affected by the acquisition of 21Nec after detachment from bedrock, in the diffusive (hillslope) and/or advective (fluvial) domains. However, for such post‐detachment nuclide acquisition to be important, this effect needs to at least equal the nuclide acquisition prior to detachment from bedrock. Copyright © 2009 John Wiley and Sons, Ltd.  相似文献   
113.
114.
115.
116.
117.
118.
119.
120.
The adiabatic lapse rate is commonly explained as being proportional to the work done on a fluid parcel as its volume changes in response to an increase in pressure. According to this explanation the adiabatic lapse rate would increase with both pressure and the fluid's compressibility, but this is not the case. Rather, the adiabatic lapse rate is proportional to the thermal expansion coefficient and is independent of the fluid's compressibility. Here we show that the adiabatic lapse rate is independent of the increase in the internal energy that a parcel experiences when it is compressed. We explain what is missing from the traditional explanation of the adiabatic lapse rate and we explore the thermodynamic cause of the adiabatic lapse rate. In particular, we seek to explain how the adiabatic lapse rate can be negative in cool fresh water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号