首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   386篇
  免费   10篇
  国内免费   4篇
测绘学   5篇
大气科学   44篇
地球物理   85篇
地质学   130篇
海洋学   31篇
天文学   77篇
综合类   3篇
自然地理   25篇
  2020年   4篇
  2019年   5篇
  2018年   3篇
  2017年   8篇
  2016年   6篇
  2015年   9篇
  2014年   7篇
  2013年   13篇
  2012年   6篇
  2011年   14篇
  2010年   7篇
  2009年   14篇
  2008年   15篇
  2007年   16篇
  2006年   15篇
  2005年   14篇
  2004年   17篇
  2003年   18篇
  2002年   14篇
  2001年   10篇
  2000年   11篇
  1999年   14篇
  1998年   7篇
  1997年   7篇
  1996年   8篇
  1994年   14篇
  1993年   9篇
  1992年   4篇
  1991年   2篇
  1990年   8篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   6篇
  1985年   5篇
  1984年   7篇
  1983年   7篇
  1982年   7篇
  1981年   2篇
  1980年   5篇
  1979年   2篇
  1978年   5篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1974年   3篇
  1973年   4篇
  1972年   3篇
  1924年   2篇
  1923年   2篇
排序方式: 共有400条查询结果,搜索用时 15 毫秒
21.
Compared to other environmental issues, such as Global Warming/Climatic Change, and the Ozone Hole, Desertification has been neglected by both scientists and funding agencies. The reasons are the complexity of the problem and the poverty and marginality of the arid lands. The author suggests a policy-oriented definition and draws attention to the differences between drought, desiccation and dry-land degradation.  相似文献   
22.
We examined particle size distributions of suspended particulate matter (SPM); physical and environmental influences on the observed distributions; and relationships between particle size and geochemical partitioning of metals, over the fall and winter period in a small urban river (Don River, Toronto, Ontario, Canada). For this dataset, the majority of particles (80%) in suspension were less than 10 µm in size. In addition, while total SPM concentrations showed a positive trend with increasing discharge (Q); the proportions of particles found within given size classes were independent of both SPM concentration and Q. Temperature was the only measured environmental variable related to the particle concentrations within size classes. As water temperature increased, the concentration of particles in the smallest size class (1–4 µm) decreased, while the concentration of silt and/or algae sized particles (10–50 µm) increased. Increasing water temperatures may promote bacterial attachment to particles and their subsequent flocculation into larger sized particles. Decreasing concentrations of leachable (most labile) Cd, Zn and Mn were associated with increasing concentrations of the largest particles (70–150 µm) in suspension. In contrast, higher reducible (oxides) associated concentrations of Cd, Zn and Mn occurred with increasing concentrations of smaller particles (1–10 µm) in suspension. Both of these trends are speculated to reflect the importance of particle surface area for metal sorption reactions.  相似文献   
23.
An integrated data-directed numerical method has been developed to estimate the undiscovered mineral endowment within a given area. The method has been used to estimate the undiscovered uranium endowment in the San Juan Basin, New Mexico, U.S.A. The favorability of uranium concentration was evaluated in each of 2,068 cells defined within the Basin. Favorability was based on the correlated similarity of the geologic characteristics of each cell to the geologic characteristics of five area-related deposit models. Estimates of the undiscovered endowment for each cell were categorized according to deposit type, depth, and cutoff grade. The method can be applied to any mineral or energy commodity provided that the data collected reflect discovered endowment.  相似文献   
24.
Results are presented from two versions of a global R15 atmospheric general circulation model (GCM) coupled to a nondynamic, 50-m deep, slab ocean. Both versions include a penetrative convection scheme that has the effect of pumping more moisture higher into the troposphere. One also includes a simple prescribed functional dependence of cloud albedo in areas of high sea-surface temperature (SST) and deep convection. Previous analysis of observations has shown that in regions of high SST and deep convection, the upper-level cloud albedos increase as a result of the greater optical depth associated with increased moisture content. Based on these observations, we prescribe increased middle- and upper-level cloud albedos in regions of SST greater than 303 K where deep convection occurs. This crudely accounts for a type of cloud optical property feedback, but is well short of a computed cloud-optical property scheme. Since great uncertainty accompanies the formulation and tuning of such schemes, the prescribed albedo feedback is an intermediate step to examine basic feedbacks and sensitivities. We compare the two model versions (with earlier results from the same model with convective adjustment) to a model from the Canadian Climate Centre (CCC) having convective adjustment and a computed cloud optical properties feedback scheme and to several other GCMs. The addition of penetrative convection increases tropospheric moisture, cloud amount, and planetary albedo and decreases net solar input at the surface. However, the competing effect of increased downward infrared flux (from increased tropospheric moisture) causes a warmer surface and increased latent heat flux. Adding the prescribed cirrus albedo feedback decreases net solar input at the surface in the tropics, since the cloud albedos increase in regions of high SST and deep convection. Downward infrared radiation (from increased moisture) also increases, but this effect is overpowered by the reduced solar input in the tropics. Therefore, the surface is somewhat cooler in the tropics, latent heat flux decreases, and global average sensitivity to a doubling of CO2 with regard to temperature and precipitation/evaporation feedback is reduced. Similar processes, evident in the CCC model with convective adjustment and a computed cloud optical properties feedback scheme, occur over a somewhat expanded latitudinal range. The addition of penetrative convection produces global effects, as does the prescribed cirrus albedo feedback, although the strongest local effects of the latter occur in the tropics.Portions of this study are supported by the Office of Health and Environmental Research of the U.S. Department of Energy as part of its Carbon Dioxide Research Program, and by the Electric Power Research Institute as part of its Model Evaluation Consortium for Climate Assessment ProjectThe National Center for Atmospheric Research is sponsored by the National Science Foundation  相似文献   
25.
26.
27.
A model for the geomorphic and vegetation development of a river valley tidal marsh in southern New England (Connecticut) is based on both the species composition of roots and rhizomes and on the mineralogic sediments preserved in peat. The maximum depth of salt marsh peat is 3.8 m and in the deepest areas this can overlie up to 1.9 m of fresh to brackish water peat. Based on a radiocarbon date of 3670±140 yr before the present (B.P.) for basal peat at a depth of 4.0 m, vertical accretion rates have averaged ca. 1.1 mm yr?1. Salt marsh formation began in response to rising sea level 3800–4000 yr B.P., as brackish marshes, dominated by bulrush (Scirpus sp.), replaced freshwater wetlands along stream and river channels. Gradually salt marsh vegetation developed over submerging brackish marshes, adjacent uplands, and accreting tidal flats. By 3000 yr B.P. the lower estuary was tidal, with sufficient salinity for salt marsh to dominate most wetlands. Spikegrass (Distichlis spicata) was an important early colonizer in salt marsh formation and its role in marsh development has not been documented previously. Blackgrass (Juncus gerardi), currently a typical upper border species, appears in the peat record relatively recently, perhaps within the last few centuries. In contrast, reed (Phragmites australis) has been present for at least 3500 yr. The dominance of reed along the upper border today, however, appears to be a relatively recent phenomenon.  相似文献   
28.
The growth and decay of ice sheets are driven by forces affecting the seasonal cycles of snowfall and snowmelt. The external forces are likely to be variations in the earth's orbit which cause differences in the solar radiation received. Radiational control of snowmelt is modulated by the seasonal cycles of snow albedo and cloud cover. The effects of orbital changes can be magnified by feedbacks involving atmospheric CO2 content, ocean temperatures and desert areas. Climate modeling of the causes of the Pleistocene ice ages involves modeling the interactions of all components of the climate system; snow, sea ice, glacier ice, the ocean, the atmosphere, and the solid earth. Such modeling is also necessary for interpreting oxygen isotope records from ice and ocean as paleoclimatic evidence.  相似文献   
29.
30.
Summary of biogeochemical prospecting for mercury mineralization in the Pinchi Fault is given. One thousand two hundred and eight plant samples were collected and analyzed for mercury. In mineralized areas the typical mercury content of dried plants was not less than 0.2 and 0.4 μg/g and even concentrations between 0.6 and 1.6 μg/g were observed. In nonmineralized zones at least 90% of the plants contained no more than 0.15 μg/g of mercury. Analytical and sampling procedures are described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号