首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3652篇
  免费   101篇
  国内免费   38篇
测绘学   55篇
大气科学   314篇
地球物理   846篇
地质学   1320篇
海洋学   337篇
天文学   497篇
综合类   10篇
自然地理   412篇
  2021年   43篇
  2020年   44篇
  2019年   54篇
  2018年   60篇
  2017年   67篇
  2016年   73篇
  2015年   80篇
  2014年   75篇
  2013年   192篇
  2012年   99篇
  2011年   145篇
  2010年   152篇
  2009年   174篇
  2008年   140篇
  2007年   120篇
  2006年   127篇
  2005年   113篇
  2004年   94篇
  2003年   91篇
  2002年   88篇
  2001年   74篇
  2000年   44篇
  1999年   57篇
  1998年   56篇
  1997年   46篇
  1996年   72篇
  1995年   47篇
  1994年   51篇
  1993年   51篇
  1992年   52篇
  1991年   57篇
  1990年   52篇
  1989年   47篇
  1988年   51篇
  1987年   51篇
  1986年   42篇
  1985年   73篇
  1984年   87篇
  1983年   90篇
  1982年   68篇
  1981年   51篇
  1980年   56篇
  1979年   56篇
  1978年   61篇
  1977年   47篇
  1976年   40篇
  1975年   30篇
  1974年   34篇
  1973年   42篇
  1972年   24篇
排序方式: 共有3791条查询结果,搜索用时 15 毫秒
81.
Cores and exposed cliff sections in salt marshes around Ho Bugt, a tidal embayment in the northernmost part of the Danish Wadden Sea, were subjected to 14C dating and litho- and biostratigraphical analyses to reconstruct paleoenvironmental changes and to establish a late Holocene relative sea-level history. Four stages in the late Holocene development of Ho Bugt can be identified: (1) groundwater-table rise and growth of basal peat (from at least 2300 BC to AD 0); (2) salt-marsh formation (0 to AD 250); (3) a freshening phase (AD 250 to AD 1600?), culminating in the drying out of the marshes and producing a distinct black horizon followed by an aeolian phase with sand deposition; and (4) renewed salt-marsh deposition (AD 1600? to present). From 16 calibrated AMS radiocarbon ages on fossil plant fragments and 4 calibrated conventional radiocarbon ages on peat, we reconstructed a local relative sea-level history that shows a steady sea-level rise of 4 m since 4000 cal yr BP. Contrary to suggestions made in the literature, the relative sea-level record of Ho Bugt does not contain a late Holocene highstand. Relative sea-level changes at Ho Bugt are controlled by glacio-isostatic subsidence and can be duplicated by a glacial isostatic adjustment model in which no water is added to the world's oceans after ca. 5000 cal yr BP.  相似文献   
82.
The páramo is a neotropical alpine ecosystem that covers more than 75,000 km2 of the northern Andes of Colombia, Ecuador, Venezuela, and Peru. It provides important environmental services: more than 10 million people in the Andean highlands benefit from the water supply and regulation function, which is attributed to the volcanic soils that underlie the ecosystem. The soils are also major carbon sinks of global significance. Severe land use changes and soil degradation threaten both the hydrology and carbon sink function. Nevertheless, soil genesis and properties in the páramo is rather poorly understood, nor are their ecological functions well documented. The impact of the geomorphology of the páramo on soil genesis was studied in the rio Paute basin, south Ecuador. Two toposequences were described and analysed. In each toposequence, four pedons were selected representing summit, backslope, undrained plain situation, and valley bottom positions in the landscape. The soils are classified as Hydric Andosols in the World Reference Base for Soil Resources and Epiaquands or Hydrudands in Soil Taxonomy. They are very acidic and have a high organic matter content, high P deficiency, and Al toxicity. Their water content ranges from 2.64 g g− 1 at saturation, down to 1.24 g g− 1 at wilting point, resulting in a large water storage capacity. Two major soil forming processes are identified: (1) volcanic ash deposition and (2) accumulation of organic carbon. Volcanic ash deposits may vary in depth as a result of regional geomorphological factors such as parent material, orientation, slope, and altitude. Organic carbon accumulation is an interaction of both waterlogging, which depends on the position in the landscape, and the formation of organometallic complexes with Al and Fe released during volcanic ash breakdown. Despite the high variability in parent material and topography, the soil is characterised by a notable homogeneity in physico-chemical properties. Statistical analysis reveals that only topographic location has a slight but significant influence on soil pH as well as the organic matter content, saturated conductivity and water retention at high pressure. Finally, the exceptional properties of these soils provide useful insights to improve classification of the Andosols reference group of the FAO World reference Base for Soil Resources.  相似文献   
83.
There is growing evidence that the budget of Pb in mantle peridotites is largely contained in sulfide, and that Pb partitions strongly into sulfide relative to silicate melt. In addition, there is evidence to suggest that diffusion rates of Pb in sulfide (solid or melt) are very fast. Given the possibility that sulfide melt “wets” sub-solidus mantle silicates, and has very low viscosity, the implications for Pb behavior during mantle melting are profound. There is only sparse experimental data relating to Pb partitioning between sulfide and silicate, and no data on Pb diffusion rates in sulfides. A full understanding of Pb behavior in sulfide may hold the key to several long-standing and important Pb paradoxes and enigmas. The classical Pb isotope paradox arises from the fact that all known mantle reservoirs lie to the right of the Geochron, with no consensus as to the identity of the “balancing” reservoir. We propose that long-term segregation of sulfide (containing Pb) to the core may resolve this paradox. Another Pb paradox arises from the fact that the Ce/Pb ratio of both OIB and MORB is greater than bulk earth, and constant at a value of 25. The constancy of this “canonical ratio” implies similar partition coefficients for Ce and Pb during magmatic processes (Hofmann et al. in Earth Planet Sci Lett 79:33–45, 1986), whereas most experimental studies show that Pb is more incompatible in silicates than Ce. Retention of Pb in residual mantle sulfide during melting has the potential to bring the bulk partitioning of Ce into equality with Pb if the sulfide melt/silicate melt partition coefficient for Pb has a value of ∼ 14. Modeling shows that the Ce/Pb (or Nd/Pb) of such melts will still accurately reflect that of the source, thus enforcing the paradox that OIB and MORB mantles have markedly higher Ce/Pb (and Nd/Pb) than the bulk silicate earth. This implies large deficiencies of Pb in the mantle sources for these basalts. Sulfide may play other important roles during magmagenesis: (1) advective/diffusive sulfide networks may form potent metasomatic agents (in both introducing and obliterating Pb isotopic heterogeneities in the mantle); (2) silicate melt networks may easily exchange Pb with ambient mantle sulfides (by diffusion or assimilation), thus “sampling” Pb in isotopically heterogeneous mantle domains differently from the silicate-controlled isotope tracer systems (Sr, Nd, Hf), with an apparent “de-coupling” of these systems.  相似文献   
84.
The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, we identify four key relationships affecting how geographic data (fields and objects) and agent-based process models can interact: identity, causal, temporal and topological. We discuss approaches to implementing tight integration, focusing on a middleware approach that links existing GIS and ABM development platforms, and illustrate the need and approaches with example agent-based models.  相似文献   
85.
Basement fault reactivation is now recognized as an important control on sedimentation and fault propagation in intracratonic basins. In southern Ontario, the basement consists of complexly structured mid-Proterozoic (ca. 1.2 Ga) crystalline rocks and metasedimentary rocks that are overlain by up to 1500 m of Paleozoic sedimentary strata. Reactivation of basement structures is suspected to control the location of Paleozoic fault and fracture systems, but evaluation has been hindered by a limited understanding of the regional structural characteristics of the buried basement. New aeromagnetic- and gravimetric-lineament mapping presented in this paper better resolves the location of basement discontinuities and provides further evidence for basement controls on the distribution of Paleozoic fault and fracture systems. Lineament mapping was facilitated by reprocessing and digital image enhancement (micro-levelling, regional residual separation, derivative filtering) of existing regional gravity and aeromagnetic datasets. Reprocessed images identify new details of the structural fabric of the basement below southern Ontario and delineate several previously unrecognized aeromagnetic and gravity lineaments and linear zones. Linear zones parallel the projected trends of mid-Proterozoic terrane boundaries identified by field mapping on the exposed shield to the north of the study area, and are interpreted as zones of shearing and basement faulting. Mapped aeromagnetic and gravity lineaments show similar trends to Paleozoic faults and fracture networks and broad zones of seismicity in southern Ontario. These new data support an ‘inheritance model’ for Paleozoic faulting, involving repeated reactivation and upward propagation of basement faults and fractures into overlying cover strata.  相似文献   
86.
We have collected about 150 magnetotelluric (MT) soundings in northeastern Nevada in the region of the Ruby Mountains metamorphic core complex uplift and southern Carlin mineral trend, in an effort to illuminate controls on core complex evolution and deposition of world-class gold deposits. The region has experienced a broad range of tectonic events including several periods of compressional and extensional deformation, which have contributed to the total expression of electrical resistivity. Most of the soundings reside in three east–west profiles across increasing degrees of core uplift to the north (Bald Mountain, Harrison Pass, and Secret Pass latitudes). One short cross-line was also taken to assess an east–west structure to the north of the northern profile. Model resistivity cross-sections were derived from the MT data using a 2-D inversion algorithm, which damps departures of model parameters from an a priori structure. Geological interpretation of the resistivity combines previous seismic, potential field and isotope models, structural and petrological models for regional compression and extension, and detailed structural/stratigraphic interpretations incorporating drilling for petroleum and mineral exploration. To first order, the resistivity structure is one of a moderately conductive, Phanerozoic sedimentary section fundamentally disrupted by intrusion and uplift of resistive crystalline rocks. Late Devonian and early Mississippian shales of the Pilot and Chainman Formations together form an important conductive marker sequence in the stratigraphy and show pronounced increases in conductance (conductivity–thickness product) from east to west. These increases are attributed to graphitization caused by Elko–Sevier era compressional shear deformation and possibly by intrusive heating. The resistive crystalline central massifs adjoin the host stratigraphy across crustal-scale, steeply dipping fault zones. The zones provide pathways to the lower crust for heterogeneous, upper crustal induced, electric current flow. Resistive core complex crust appears steeply bounded under the middle of the neighboring grabens and not to deepen at a shallow angle to arbitrary distances to the west. The numerous crustal breaks imaged with MT may contribute to the low effective elastic thickness (Te) estimated regionally for the Great Basin and exemplify the mid-crustal, steeply dipping slip zones in which major earthquakes nucleate. An east–west oriented conductor in the crystalline upper crust spans the East Humboldt Range and northern Ruby Mountains. The conductor may be related to nearby graphitic metasediments, with possible alteration by middle Tertiary magmatism. Lower crustal resistivity everywhere under the profiles is low and appears quasi one-dimensional. It is consistent with a low rock porosity (<1 vol.%) containing hypersaline brines and possible water-undersaturated crustal melts, residual to the mostly Miocene regional extension. The resistivity expression of the southern Carlin Trend (CT) in the Pinon Range is not a simple lineament but rather a family of structures attributed to Eocene intrusion, stratal deformation, and alteration/graphitization. Substantial reactivation or overprinting by core complex uplift or Basin–Range extensional events seems likely. We concur with others that the Carlin Trend may result in part from overlap of the large Eocene Northeast Nevada Volcanic Field with Precambrian–Paleozoic deep-water clastic source rocks thickening abruptly to the west of the Pinon Range, and projecting to the north–northwest.  相似文献   
87.
88.
We established trophic guilds of macroinvertebrate and fish taxa using correspondence analysis and a hierarchical clustering strategy for a seagrass food web in winter in the northeastern Gulf of Mexico. To create the diet matrix, we characterized the trophic linkages of macroinvertebrate and fish taxa present inHalodule wrightii seagrass habitat areas within the St. Marks National Wildlife Refuge (Florida) using binary data, combining dietary links obtained from relevant literature for macroinvertebrates with stomach analysis of common fishes collected during January and February of 1994. Heirarchical average-linkage cluster analysis of the 73 taxa of fishes and macroinvertebrates in the diet matrix yielded 14 clusters with diet similarity ≥ 0.60. We then used correspondence analysis with three factors to jointly plot the coordinates of the consumers (identified by cluster membership) and of the 33 food sources. Correspondence analysis served as a visualization tool for assigning each taxon to one of eight trophic guilds: herbivores, detritivores, suspension feeders, omnivores, molluscivores, meiobenthos consumers, macrobenthos consumers and piscivores. These trophic groups, corss-classified with major taxonomic groups, were further used to develop consumer compartments in a network analysis model of carbon flow in this seagrass ecosystem. The method presented here should greatly improve the development of future network models of food webs by providing an objective procedure for aggregating trophic groups.  相似文献   
89.
Combining a geological model with a geomechanical model, it generally turns out that the geomechanical model is built from units that are at least a 100 times larger in volume than the units of the geological model. To counter this mismatch in scales, the geological data model's heterogeneous fine-scale Young's moduli and Poisson's ratios have to be “upscaled” to one “equivalent homogeneous” coarse-scale rigidity. This coarse-scale rigidity relates the volume-averaged displacement, strain, stress, and energy to each other, in such a way that the equilibrium equation, Hooke's law, and the energy equation preserve their fine-scale form on the coarse scale. Under the simplifying assumption of spatial periodicity of the heterogeneous fine-scale rigidity, homogenization theory can be applied. However, even then the spatial variability is generally so complex that exact solutions cannot be found. Therefore, numerical approximation methods have to be applied. Here the node-based finite element method for the displacement as primary variable has been used. Three numerical examples showing the upper bound character of this finite element method are presented.  相似文献   
90.
We utilized nuclear explosions from the Degelen Mountain sub-region of the Semipalatinsk Test Site (STS), Kazakhstan, to assess seismic location capability directly. Excellent ground truth information for these events was either known or was estimated from maps of the Degelen Mountain adit complex. Origin times were refined for events for which absolute origin time information was unknown using catalog arrival times, our ground truth location estimates, and a time baseline provided by fixing known origin times during a joint hypocenter determination (JHD). Precise arrival time picks were determined using a waveform cross-correlation process applied to the available digital data. These data were used in a JHD analysis. We found that very accurate locations were possible when high precision, waveform cross-correlation arrival times were combined with JHD. Relocation with our full digital data set resulted in a mean mislocation of 2 km and a mean 95% confidence ellipse (CE) area of 6.6 km2 (90% CE: 5.1 km2), however, only 5 of the 18 computed error ellipses actually covered the associated ground truth location estimate. To test a more realistic nuclear test monitoring scenario, we applied our JHD analysis to a set of seven events (one fixed) using data only from seismic stations within 40° epicentral distance. Relocation with these data resulted in a mean mislocation of 7.4 km, with four of the 95% error ellipses covering less than 570 km2 (90% CE: 438 km2), and the other two covering 1730 and 8869 km2 (90% CE: 1331 and 6822 km2). Location uncertainties calculated using JHD often underestimated the true error, but a circular region with a radius equal to the mislocation covered less than 1000 km2 for all events having more than three observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号