首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   18篇
  国内免费   7篇
测绘学   25篇
大气科学   19篇
地球物理   56篇
地质学   80篇
海洋学   3篇
天文学   28篇
自然地理   26篇
  2023年   1篇
  2021年   1篇
  2020年   4篇
  2019年   8篇
  2018年   8篇
  2017年   13篇
  2016年   11篇
  2015年   10篇
  2014年   14篇
  2013年   17篇
  2012年   9篇
  2011年   11篇
  2010年   13篇
  2009年   22篇
  2008年   15篇
  2007年   13篇
  2006年   16篇
  2005年   11篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   8篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有237条查询结果,搜索用时 15 毫秒
31.
Relict rock glaciers are complex hydrogeological systems that might act as relevant groundwater storages; therefore, the discharge behavior of these alpine landforms needs to be better understood. Hydrogeological and geophysical investigations at a relict rock glacier in the Niedere Tauern Range (Austria) reveal a slow and fast flow component that appear to be related to the heterogeneous structure of the aquifer. A numerical groundwater flow model was used to indicate the influence of important internal structures such as layering, preferential flow paths and aquifer-base topography. Discharge dynamics can be reproduced reasonably by both introducing layers of strongly different hydraulic conductivities or by a network of highly conductive channels within a low-conductivity zone. Moreover, the topography of the aquifer base influences the discharge dynamics, which can be observed particularly in simply structured aquifers. Hydraulic conductivity differences of three orders of magnitude are required to account for the observed discharge behavior: a highly conductive layer and/or channel network controlling the fast and flashy spring responses to recharge events, as opposed to less conductive sediment accumulations sustaining the long-term base flow. The results show that the hydraulic behavior of this relict rock glacier and likely that of others can be adequately represented by two aquifer components. However, the attempt to characterize the two components by inverse modeling results in ambiguity of internal structures when solely discharge data are available.  相似文献   
32.
Karst aquifers represent dual flow systems consisting of a highly conductive conduit system embedded in a less permeable rock matrix. Hybrid models iteratively coupling both flow systems generally consume much time, especially because of the nonlinearity of turbulent conduit flow. To reduce calculation times compared to those of existing approaches, a new iterative equation solver for the conduit system is developed based on an approximated Newton–Raphson expression and a Gauß–Seidel or successive over‐relaxation scheme with a single iteration step at the innermost level. It is implemented and tested in the research code CAVE but should be easily adaptable to similar models such as the Conduit Flow Process for MODFLOW‐2005. It substantially reduces the computational effort as demonstrated by steady‐state benchmark scenarios as well as by transient karst genesis simulations. Water balance errors are found to be acceptable in most of the test cases. However, the performance and accuracy may deteriorate under unfavorable conditions such as sudden, strong changes of the flow field at some stages of the karst genesis simulations.  相似文献   
33.
Abstract: The Early Holocene paleoclimate in Bosten Lake on the northern margin of the Tarim Basin, southern Xinjiang, is reconstructed through an analysis of a 953 cm long core (BSTC2000) taken from Bosten Lake. Multiple proxies of this core, including the mineral components of carbonate, carbonate content, stable isotopic compositions of carbonate, Ca/Sr, TOC and C/N and C/S of organic matter, are used to reconstruct the climatic change since 8500 a B.P. The chronology model is made by nine AMS 14C ages of leaves, seeds and organic matter contained in two parallel cores. The climate was cold and wet during 8500 to 8100 a B.P. Temperature increased from 8100 to 6400 a B.P., the climate was warm and humid, and the lake expanded. The lake level was highest during this stage. Then from 6400 to 5100 a B.P., the climate became cold and the lake level decreased slightly. During the late mid-Holocene, the climate was hot and dry from 5100 to 3100 a B.P., but there was a short cold period during 4400 to 3800 a B.P. At this temporal interval, a mass of ice and snow melting water supplied the lake at the early time and made the lake level rise. The second highest lake level stage occurred during 5200 to 3800 a B.P. The climate was cool and wet during 3100 to 2200 a B.P., when the lake expanded with decreasing evaporation. The lake had the last short-term high level during 3100 to 2800 a B.P. After this short high lake level period, the lake shrank because of the long-term lower temperature and reduced water supply. From 2200 to 1200 a B.P., the climate was hot and dry, and the lake shrank greatly. Although the temperature decreased somewhat from 1200 a B.P. to the present, the climate was warm and dry. The lake level began to rise a little again, but it did not reach the river bed altitude of the Konqi River, an outflow river of the Bosten Lake.  相似文献   
34.
Stable isotope analysis of ostracod shells is used routinely for palaeoenvironmental studies of ostracod-bearing records. Sample treatment usually involves the disaggregation of sediments and sieving; before the sieving residues were washed with water onto petri dishes and oven-dried. In our study, we compared δ18O and δ13C values of shells that were oven-dried from water and from ethanol alternatively. Large isotopic differences of up to 3‰ were determined for δ18O values, whereas differences in δ13C values were less pronounced with differences of up to 1.6‰. Stable isotope values of shells dried from water were lower for both oxygen and carbon as a result of calcite crystals precipitated on the shell surfaces during the drying process. Therefore, ostracod shells for stable isotope analysis should not be prepared by drying from water. Instead, shells should be dried from ethanol to obtain reliable stable isotope data; likewise freeze-drying is expected to provide trustworthy results.  相似文献   
35.
36.
This work examines the simulation of stream–aquifer interactions as grids are refined vertically and horizontally and suggests that traditional methods for calculating conductance can produce inappropriate values when the grid size is changed. Instead, different grid resolutions require different estimated values. Grid refinement strategies considered include global refinement of the entire model and local refinement of part of the stream. Three methods of calculating the conductance of the Cauchy boundary conditions are investigated. Single- and multi-layer models with narrow and wide streams produced stream leakages that differ by as much as 122% as the grid is refined. Similar results occur for globally and locally refined grids, but the latter required as little as one-quarter the computer execution time and memory and thus are useful for addressing some scale issues of stream–aquifer interactions. Results suggest that existing grid-size criteria for simulating stream–aquifer interactions are useful for one-layer models, but inadequate for three-dimensional models. The grid dependence of the conductance terms suggests that values for refined models using, for example, finite difference or finite-element methods, cannot be determined from previous coarse-grid models or field measurements. Our examples demonstrate the need for a method of obtaining conductances that can be translated to different grid resolutions and provide definitive test cases for investigating alternative conductance formulations.  相似文献   
37.
38.
A general mean annual temperature increase accompanied with substantial glacial retreat has been noted on the Tibetan Plateau during the last two centuries but most significantly since the mid 1950s. These climate trends are particularly apparent on the southeastern Tibetan Plateau. However, the Tibetan Plateau (due to its heterogeneous mountain landscape) has very complex and spatially differing temperature and precipitations patterns. As a result, intensive palaeolimnological investigations are necessary to decipher these climatic patterns and to understand ecological responses to recent environmental change. Here we present palaeolimnological results from a 210Pb/137Cs-dated sediment core spanning approximately the last 200 years from a remote high-mountain lake (LC6 Lake, working name) on the southeastern Tibetan Plateau. Sediment profiles of diatoms, organic variables (TOC, C:N) and grain size were investigated. The 210Pb record suggests a period of rapid sedimentation, which might be linked to major tectonic events in the region ca. 1950. Furthermore, unusually high 210Pb supply rates over the last 50 years suggest that the lake has possibly been subjected to increasing precipitation rates, sediment focussing and/or increased spring thaw. The majority of diatom taxa encountered in the core are typical of slightly acidic to circumneutral, oligotrophic, electrolyte-poor lakes. Diatom species assemblages were rich, and dominated by Cyclotella sp., Achnanthes sp., Aulacoseira sp. and fragilarioid taxa. Diatom compositional change was minimal over the 200-year period (DCCA = 0.85 SD, p = 0.59); only a slightly more diverse but unstable diatom assemblage was recorded during the past 50 years. The results indicate that large-scale environmental changes recorded in the twentieth century (i.e. increased precipitation and temperatures) are likely having an affect on the LC6 Lake, but so far these impacts are more apparent on the lake geochemistry than on the diatom flora. Local and/or regional peculiarities, such as increasing precipitation and cloud cover, or localized climatic phenomena, such as negative climate feedbacks, might have offset the effects of increasing mean surface temperatures.  相似文献   
39.
Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda–Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite–martite–goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in ‘least-altered’ hematite–magnetite–metachert–BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe–Ca–Mg–Ni–Co–P–REE metasomatism that produced local Ni–REE-rich Fe–dolomite–magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle–ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni–Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite–hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)–Fe–dolomite–quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides, carbonate and quartz to form veins and breccia but did not generate significant volumes of iron ore. Ore stage 4 involved Mesozoic(?) to recent supergene oxidation and hydration in a weathering environment reaching down to depths of ~100 to maximum 200 m below surface. Supergene ore formation involved goethite replacement of dolomite and quartz as well as martitisation. Important ‘ground preparation’ for supergene modification and upgrade were mainly the formation of steep D1 to D4 structures, steep BIF/basalt margins and particularly the syn-D1 to syn-D2 carbonate alteration of BIF that is most susceptible to supergene dissolution. The Windarling deposits are structurally controlled, supergene-modified hydrothermal iron ore systems that share comparable physical, chemical and ore-forming characteristics to other iron ore deposits in the Yilgarn Craton (e.g. Koolyanobbing, Beebyn in the Weld Range, Mt. Gibson). However, the remarkable variety in pre-, syn- and post-deformational ore textures (relative to D1 and D2) has not been described elsewhere in the Yilgarn and are similar to the ore deposits in high-strain zones, such as of Brazil (Quadrilátero Ferrífero or Iron Quadrangle) and Nigeria. The overall similarity of alteration stages, i.e. the sequence of hydrothermal carbonate introduction and hypogene leaching, with other greenstone belt-hosted iron ore deposits supports the interpretation that syn-orogenic BIF alteration and upgrade was crucial in the formation of hypogene–supergene iron ore deposits in the Yilgarn Craton and possibly in other Archean/Paleoproterozoic greenstone belt settings worldwide.  相似文献   
40.
There are three major issues in modeling solar evanescent oscillations: the variation of the intensity [I]–velocity [V] phase difference of p-modes close to the base of photosphere; the existence of a plateau of negative IV phase differences below and between the ridges of the low-frequency p-modes; the explanation of the IV cross-spectra of the evanescent oscillations. We present new interpretations for the first two issues, based on modeling intensity fluctuations taking steep temperature gradients, opacity, and non-adiabatic cooling into account. We also discuss consequences of our model for the explanation of power spectra and cross-power spectra of p-modes. In particular, we present evidence that the acoustic sources that generate evanescent waves produce a coherent background that explains the plateau–interridge regime of negative IV phase difference.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号