首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
地质学   2篇
自然地理   16篇
  2022年   1篇
  2021年   7篇
  2020年   9篇
  2019年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
11.

In the present work, blast-induced air overpressure is estimated by an innovative intelligence system based on the cubist algorithm (CA) and genetic algorithm (GA) with high accuracy, called GA–CA model. Herein, CA initialization model was developed first and the hyper-parameters of the CA model were selected randomly. Subsequently, the GA procedure was applied to perform a global search for the optimized values of the hyper-factors of the CA model. Root-mean-square error (RMSE) is utilized as a compatibility function to determine the optimal CA model with the lowest RMSE. Gaussian process (GP), conditional inference tree (CIT), principal component analysis (PCA), hybrid neural fuzzy inference system (HYFIS) and k-nearest neighbor (k-NN) models are also developed as the benchmark models in order to compare and analyze the quality of the proposed GA–CA algorithm; 164 blasting works were investigated at a quarry mine of Vietnam for this aim. The results revealed that GA significantly improved the performance of the CA model. Based on the statistical indices used for model assessment, the proposed GA–CA model was confirmed as the most superior model as compared to the other models (i.e., GP, CIT, HYFIS, PCA, k-NN). It can be applied as a robust soft computing tool for estimating blast-induced air overpressure.

  相似文献   
12.
Shang  Li  Nguyen  Hoang  Bui  Xuan-Nam  Vu  Thai Ha  Costache  Romulus  Hanh  Le Thi Minh 《Acta Geotechnica》2022,17(4):1295-1314
Acta Geotechnica - This study aims to propose state-of-the-art techniques in predicting and controlling slope stability in open-pit mines based on limit equilibrium analysis, artificial neural...  相似文献   
13.
Bui  Xuan-Nam  Nguyen  Hoang  Le  Hai-An  Bui  Hoang-Bac  Do  Ngoc-Hoan 《Natural Resources Research》2020,29(2):571-591

Air over-pressure (AOp) is one of the products of blasting operations for rock fragmentation in open-pit mines. It can cause structural vibration, smash glass doors, adversely affect the surrounding environment, and even be fatal to humans. To assess its dangerous effects, seven artificial intelligence (AI) methods for predicting specific blast-induced AOp have been applied and compared in this study. The seven methods include random forest, support vector regression, Gaussian process, Bayesian additive regression trees, boosted regression trees, k-nearest neighbors, and artificial neural network (ANN). An empirical technique was also used to compare with AI models. The degree of complexity and the performance of the models were compared with each other to find the optimal model for predicting blast-induced AOp. The Deo Nai open-pit coal mine (Vietnam) was selected as a case study where 113 blasting events have been recorded. Indicators used for evaluating model performances include the root-mean-square error (RMSE), determination coefficient (R2), and mean absolute error (MAE). The results indicate that AI techniques provide better performance than the empirical method. Although the relevance of the empirical approach was acceptable (R2?=?0.930) in this study, its error (RMSE?=?7.514) is highly significant to guarantee the safety of the surrounding environment. In contrast, the AI models offer much higher accuracies. Of the seven AI models, ANN was the most dominant model based on RMSE, R2, and MAE. This study demonstrated that AI techniques are excellent for predicting blast-induced AOp in open-pit mines. These techniques are useful for blasters and managers in controlling undesirable effects of blasting operations on the surrounding environment.

  相似文献   
14.
Natural Resources Research - Blasting is a useful technique for rocks fragmentation in open-pit mines, underground mines, as well as for civil engineering work. However, the negative impacts of...  相似文献   
15.
Natural Resources Research - In this paper, blast-induced ground vibration (BIGV) was considered as the primary objective, and a new artificial intelligence system was proposed to predict BIGV with...  相似文献   
16.
Zhang  Xiliang  Nguyen  Hoang  Choi  Yosoon  Bui  Xuan-Nam  Zhou  Jian 《Natural Resources Research》2021,30(6):4735-4751
Natural Resources Research - Peak particle velocity (PPV) is an important criterion for assessing the risk level of ground vibration induced by mine blasting. Based on this criterion, many efforts...  相似文献   
17.
Natural Resources Research - Predicting and reducing blast-induced ground vibrations is a common concern among engineers and mining enterprises. Dealing with these vibrations is a challenging issue...  相似文献   
18.
Natural Resources Research - The primary purpose of this study was to develop a novel hybrid artificial intelligence model, with a robust performance, to predict ground vibration induced by bench...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号