首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17159篇
  免费   2191篇
  国内免费   3195篇
测绘学   1209篇
大气科学   2736篇
地球物理   3721篇
地质学   7808篇
海洋学   2191篇
天文学   2180篇
综合类   940篇
自然地理   1760篇
  2024年   71篇
  2023年   212篇
  2022年   537篇
  2021年   638篇
  2020年   539篇
  2019年   644篇
  2018年   776篇
  2017年   706篇
  2016年   868篇
  2015年   722篇
  2014年   917篇
  2013年   1153篇
  2012年   993篇
  2011年   1168篇
  2010年   1028篇
  2009年   1135篇
  2008年   1051篇
  2007年   956篇
  2006年   874篇
  2005年   762篇
  2004年   639篇
  2003年   588篇
  2002年   585篇
  2001年   543篇
  2000年   450篇
  1999年   457篇
  1998年   370篇
  1997年   345篇
  1996年   324篇
  1995年   288篇
  1994年   224篇
  1993年   197篇
  1992年   158篇
  1991年   136篇
  1990年   116篇
  1989年   128篇
  1988年   87篇
  1987年   116篇
  1986年   78篇
  1985年   79篇
  1984年   75篇
  1983年   81篇
  1982年   76篇
  1981年   75篇
  1980年   57篇
  1979年   57篇
  1977年   50篇
  1976年   47篇
  1975年   35篇
  1973年   41篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
力马河镍矿Re-Os同位素研究   总被引:10,自引:0,他引:10  
陶琰 《地质学报》2008,82(9):1292-1304
四川力马河镍矿是峨眉山大火成岩省一个重要的岩浆硫化物矿床。本文通过对其主要岩、矿石类型Re、Os及其同位素组成的分析,综合探讨了成矿岩体原始岩浆性质、矿石硫化物成因、成矿机制及Re-Os同位素等时线年龄。结果表明,力马河镍矿不同类型岩矿石样品初始Os同位素组成是不均一的,富硫化物的网脉状矿石及其选纯硫化物Os同位素组成初值差异较小,其等时线年龄为265±35 Ma、与岩体锆石SHRIMP年龄263±3 Ma基本相当;硫化物含量较低的岩、矿石样品间初始Os同位素组成差异较大,其表观等时线年龄大于成矿年龄。分析认为,岩矿样品初始Os同位素组成的不均一是由含较高放射成因187Os丰度的硫化物熔体和含较低放射成因187Os丰度的硅酸盐熔体不同比例混合造成的。混合模型分析表明,硫化物含量超过30%的矿石样品初始187Os/188Os基本接近,硫化物含量低于30%的岩矿石样品初始187Os/188Os随硫化物含量上的不同差异很大,为岩浆硫化物矿床Re-Os等时线年龄可能出现多组年龄解的现象提供了一种可能的解释。成矿岩体中含放射成因187Os丰度最低的岩石样品γOs(t=260Ma)在5左右、Cu/Pd比值在7000左右,表明是基本没有受到地壳混染及硫化物熔离影响的原始岩浆结晶分异产物,估计原始岩浆Os含量在1×10-9左右,为苦橄质岩浆。矿石硫化物Re/Os比值显著高于任何赋矿橄榄岩,γOs(t=260Ma)高达110左右,综合分析揭示了力马河镍矿硫化物为二次熔离成因,模式分析认为,矿石硫化物是由原始岩浆经历R=2000左右的硫化物熔离后、其亏损岩浆再经R=200左右的硫化物熔离形成,与二次熔离相对应,成矿岩浆也经历了两次混染作用,分别为上、下地壳7%左右的混染。  相似文献   
82.
The uptake and release of trace metals (Cu, Ni, Zn, Cd, and Co) in estuaries are studied using river and sea end-member waters and suspended particulate matter (SPM) collected from the Changjiang Estuary, China. The kinetics of adsorption and desorption were studied in terms of environmental factors (pH, SPM loading, and salinity) and metal concentrations. The uptake of the metals studied onto SPM occurred mostly within 10 h and reached an asymptotic value within 40 h in the Changjiang Estuary. As low pH river water flows into the high pH seawater and the water become more alkaline as it approaches to the seaside of estuary, metals adsorb more on SPM in higher pH water, thus, particulate phase transport of metal become increasingly important in the seaward side of the estuary. The percentage of adsorption recovery and the distribution coefficients for trace metals remained to be relatively invariable and a significant reduction only occurred in very high concentrations of metals (>0.1 mg L−1). The general effect of salinity on metal behavior was to decrease the degree of adsorption of Cu, Zn, Cd, Co, and Ni onto SPM but to increase their adsorption equilibrium pH. The adsorption–desorption kinetics of trace metals were further investigated using Kurbatov adsorption model. The model appears to be most useful for the metals showing the conservative behavior during mixing of river and seawater in the estuary. Our work demonstrates that dissolved concentration of trace metals in estuary can be modeled based on the metal concentration in SPM, pH and salinity using a Kurbatov adsorption model assuming the natural SPM as a simple surfaced molecule.  相似文献   
83.
The grain-scale processes of peridotite melting were examined at 1,340°C and 1.5 GPa using reaction couples formed by juxtaposing pre-synthesized clinopyroxenite against pre-synthesized orthopyroxenite or harzburgite in graphite and platinum-lined molybdenum capsules. Reaction between the clinopyroxene and orthopyroxene-rich aggregates produces a melt-enriched, orthopyroxene-free, olivine + clinopyroxene reactive boundary layer. Major and trace element abundance in clinopyroxene vary systematically across the reactive boundary layer with compositional trends similar to the published clinopyroxene core-to-rim compositional variations in the bulk lherzolite partial melting studies conducted at similar PT conditions. The growth of the reactive boundary layer takes place at the expense of the orthopyroxenite or harzburgite and is consistent with grain-scale processes that involve dissolution, precipitation, reprecipitation, and diffusive exchange between the interstitial melt and surrounding crystals. An important consequence of dissolution–reprecipitation during crystal-melt interaction is the dramatic decrease in diffusive reequilibration time between coexisting minerals and melt. This effect is especially important for high charged, slow diffusing cations during peridotite melting and melt-rock reaction. Apparent clinopyroxene-melt partition coefficients for REE, Sr, Y, Ti, and Zr, measured from reprecipitated clinopyroxene and coexisting melt in the reactive boundary layer, approach their equilibrium values reported in the literature. Disequilibrium melting models based on volume diffusion in solid limited mechanism are likely to significantly underestimate the rates at which major and trace elements in residual minerals reequilibrate with their surrounding melt. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
84.
The current practice of slope stability analysis for a municipal solid waste (MSW) landfill usually overlooks the dependence of waste properties on the fill age or embedment depth. Changes in shear strength of MSW as a function of fill age were investigated by performing field and laboratory studies on the Suzhou landfill in China. The field study included sampling from five boreholes advanced to the bottom of the landfill, cone penetration tests and monitoring of pore fluid pressures. Twenty-six borehole samples representative of different fill ages (0 to 13 years) were used to perform drained triaxial compression tests. The field and laboratory study showed that the waste body in the landfill can be sub-divided into several strata corresponding to different ranges of fill age. Each of the waste strata has individual composition and shear strength characteristics. The triaxial test results showed that the MSW samples exhibited a strain-hardening and contractive behavior. As the fill age of the waste increased from 1.7 years to 11 years, the cohesion mobilized at a strain level of 10% was found to decrease from 23.3 kPa to 0 kPa, and the mobilized friction angle at the same strain level increasing from 9.9° to 26°. For a confinement stress level greater than 50 kPa, the shear strength of the recently-placed MSW seemed to be lower than that of the older MSW. This behavior was consistent with the cone penetration test results. The field measurement of pore pressures revealed a perched leachate mound above an intermediate cover of soils and a substantial leachate mound near the bottom of the landfill. The measurements of shear strength properties and pore pressures were utilized to assess the slope stability of the Suzhou landfill.  相似文献   
85.
A systematic investigation on silica contents and silicon isotope compositions of bamboos was undertaken. Seven bamboo plants and related soils were collected from seven locations in China. The roots, stem, branch and leaves for each plant were sampled and their silica contents and silicon isotope compositions were determined. The silica contents and silicon isotope compositions of bulk and water-soluble fraction of soils were also measured. The silica contents of studied bamboo organs vary from 0.30% to 9.95%. Within bamboo plant the silica contents show an increasing trend from stem, through branch, to leaves. In bamboo roots the silica is exclusively in the endodermis cells, but in stem, branch and leaves, the silica is accumulated mainly in epidermal cells. The silicon isotope compositions of bamboos exhibit significant variation, from −2.3‰ to 1.8‰, and large and systematic silicon isotope fractionation was observed within each bamboo. The δ30Si values decrease from roots to stem, but then increase from stem, through branch, to leaves. The ranges of δ30Si values within each bamboo vary from 1.0‰ to 3.3‰. Considering the total range of silicon isotope composition in terrestrial samples is only 7‰, the observed silicon isotope variation in single bamboo is significant and remarkable. This kind of silicon isotope variation might be caused by isotope fractionation in a Rayleigh process when SiO2 precipitated in stem, branches and leaves gradually from plant fluid. In this process the Si isotope fractionation factor between dissolved Si and precipitated Si in bamboo (αpre-sol) is estimated to be 0.9981. However, other factors should be considered to explain the decrease of δ30Si value from roots to stem, including larger ratio of dissolved H4SiO4 to precipitated SiO2 in roots than in stem. There is a positive correlation between the δ30Si values of water-soluble fractions in soils and those of bulk bamboos, indicating that the dissolved silicon in pore water and phytoliths in soil is the direct sources of silicon taken up by bamboo roots. A biochemical silicon isotope fractionation exists in process of silicon uptake by bamboo roots. Its silicon isotope fractionation factor (αbam-wa) is estimated to be 0.9988. Considering the distribution patterns of SiO2 contents and δ30Si values among different bamboo organs, evapotranspiration may be the driving force for an upward flow of a silicon-bearing fluid and silica precipitation. Passive silicon uptake and transportation may be important for bamboo, although the role of active uptake of silicic acid by roots may not be neglected. The samples with relatively high δ30Si values all grew in soils showing high content of organic materials. In contrast, the samples with relatively low δ30Si values all grew in soil showing low content of organic materials. The silicon isotope composition of bamboo may reflect the local soil type and growth conditions. Our study suggests that bamboos may play an important role in global silicon cycle.  相似文献   
86.
Several lines of evidence suggest that the melt generation and segregation regions of the mantle are heterogeneous, consisting of chemically and lithologically distinct domains of variable size and dimension. Partial melting of such heterogeneous mantle source regions gives rise to a diverse range of basaltic magmas. In order to better assess the role of source heterogeneity during mantle melting, we have undertaken a theoretical study of trace element distribution and fractionation during concurrent melting and melt migration in an upwelling, chemically heterogeneous, two-porosity double lithology melting column. Analytical solutions for the abundance of a trace element in the matrix and channel were obtained under the assumptions that the porosity, melt and solid velocities, and solid-melt partition coefficients are constant and uniform. For simplicity, we neglected diffusion and dispersion in the melt. Chemical source heterogeneities of arbitrary size and shape were integrated into the simple melting models by allowing trace element abundance in the source region to vary as a function of time and space. Concurrent melting and melt migration in an upwelling heterogeneous mantle may be approximated as a quasi-steady state problem in which time-dependent concentration patterns produced by melting of heterogeneous source regions are superimposed on a reference steady-state concentration distribution established by melting of the ambient or background mantle. Chromatographic fractionation is especially important for the matrix melt and solid when chemical heterogeneities are involved during melting and melt migration in the mantle, giving rise to significant phase-shift between two incompatible trace elements in the matrix melt and scattered correlations among incompatible trace elements in residual peridotites. Mixing is the chief mass transfer process in the dunite channel where the chromatographic effect is negligible for most of the incompatible trace elements. The lack of chromatographic fractionation among incompatible trace elements and isotopic ratios in MORB suggests either most MORB are channel melts or mixing in magma conduit and chamber is very efficient such that the phase-shift is averaged out during magma transport and storage processes. Advection brings melt produced by smaller-degree of melting in the deeper part of the melting column to the overlying melting region, increasing the incompatible trace element abundance in the matrix and the channel. This advection-induced self-enrichment is especially important when heterogeneous sources are involved and may account for some of the enriched incompatible trace element patterns observed in residual peridotite that were previously interpreted to be a result of mantle metasomatism. Systematic studies of high-resolution spatially correlated mantle samples may help to constrain the melting history and the size and nature of chemical heterogeneities in the mantle.  相似文献   
87.
One of the reasons the processes resulting in As release to groundwater in southern Asia remain poorly understood is the high degree of spatial variability of physical and chemical properties in shallow aquifers. In an attempt to overcome this difficulty, a simple device that collects groundwater and sediment as a slurry from precisely the same interval was developed in Bangladesh. Recently published results from Bangladesh and India relying on the needle-sampler are augmented here with new data from 37 intervals of grey aquifer material of likely Holocene age in Vietnam and Nepal. A total of 145 samples of filtered groundwater ranging in depth from 3 to 36 m that were analyzed for As (1–1000 μg/L), Fe (0.01–40 mg/L), Mn (0.2–4 mg/L) and S (0.04–14 mg/L) are compared. The P-extractable (0.01–36 mg/kg) and HCl-extractable As (0.04–36 mg/kg) content of the particulate phase was determined in the same suite of samples, in addition to Fe(II)/Fe ratios (0.2–1.0) in the acid-leachable fraction of the particulate phase. Needle-sampler data from Bangladesh indicated a relationship between dissolved As in groundwater and P-extractable As in the particulate phase that was interpreted as an indication of adsorptive equilibrium, under sufficiently reducing conditions, across 3 orders of magnitude in concentrations according to a distribution coefficient of 4 mL/g. The more recent observations from India, Vietnam and Nepal show groundwater As concentrations that are often an order of magnitude lower at a given level of P-extractable As compared to Bangladesh, even if only the subset of particularly reducing intervals characterized by leachable Fe(II)/Fe >0.5 and dissolved Fe >0.2 mg/L are considered. Without attempting to explain why As appears to be particularly mobile in reducing aquifers of Bangladesh compared to the other regions, the consequences of increasing the distribution coefficient for As between the particulate and dissolved phase to 40 mL/g for the flushing of shallow aquifers of their initial As content are explored.  相似文献   
88.
Microbial Fe reduction is widely believed to be the primary mechanism of As release from aquifer sands in Bangladesh, but alternative explanations have been proposed. Long-term incubation studies using natural aquifer material are one way to address such divergent views. This study addresses two issues related to this approach: (1) the need for suitable abiotic controls and (2) the spatial variability of the composition of aquifer sands. Four sterilization techniques were examined using orange-colored Pleistocene sediment from Bangladesh and artificial groundwater over 8 months. Acetate (10 mM) was added to sacrificial vials before sterilization using either (1) 25 kGy of gamma irradiation, (2) three 1-h autoclave cycles, (3) a single addition of an antibiotic mixture at 1× or (4) 10× the typical dose, and (5) a 10 mM addition of azide. The effectiveness of sterilization was evaluated using two indicators of microbial Fe reduction, changes in diffuse spectral reflectance and leachable Fe(II)/Fe ratios, as well as changes in P-extractable As concentrations in the solid phase. A low dose of antibiotics was ineffective after 70 days, whereas autoclaving significantly altered groundwater composition. Gamma irradiation, a high dose of antibiotics, and azide were effective for the duration of the experiment.  相似文献   
89.
Abstract The Taiwan orogen has been the focus of a number of models of mountain building processes, but little attention has been paid to high‐pressure (HP) metamorphic rocks that are found as exotic blocks intermingled within the deepest units of the mountain belt. In this study, we re‐appraise from updated petrological and thermodynamic databases the physical conditions of HP metamorphism in Taiwan, and we combine our findings with available geochronological data to estimate the thermal history of these rocks. Our results indicate that peak metamorphic conditions of ~550 °C and 10–12 kbar have been followed by a rapid isothermal decompression, with exhumation possibly as rapid as burial. These units have subsequently been stored at a pressure of ~3 kbar for ~4–5 Myr, before their final exhumation, probably facilitated by the accretion of passive margin sequences during the Late Cenozoic collision. Therefore, HP units in Taiwan maintain a record of processes at depth from the early stages of oceanic subduction to the present arc‐continent collision.  相似文献   
90.
在柴达木盆地北缘地区,分别选取有机碳含量很低和较高的侏罗系泥岩样品,对比分析了它们在生物标志物组成上的差异。结果发现,高有机质丰度泥岩的生标组成与我国西北地区侏罗纪煤系有机质的特征差异不大,相比而言,低有机质丰度泥岩的正烷烃以前主峰为特征,Pr/Ph比值在1.0左右,三环萜烷和伽马蜡烷丰度较高,并在部分样品中检出了25 降藿烷系列。结合泥岩的有机岩石学特征,认为这些差异可能反映了泥岩沉积环境和生烃母质的不同:高有机质丰度泥岩的有机显微组分以相对弱还原条件下的形态有机质为主,包括藻类体、孢子体和角质体等,而低有机质丰度泥岩的有机显微组分以相对强还原条件下的矿物沥青基质为主,其母质可能来源于低等显微菌藻类。进一步通过对比不同有机质丰度泥岩,以及区内原油生标组成之间的相互关系,讨论了研究区的油源问题。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号