首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24144篇
  免费   3240篇
  国内免费   4741篇
测绘学   1282篇
大气科学   4269篇
地球物理   5217篇
地质学   11968篇
海洋学   3028篇
天文学   2218篇
综合类   1744篇
自然地理   2399篇
  2024年   95篇
  2023年   339篇
  2022年   1004篇
  2021年   1236篇
  2020年   1080篇
  2019年   1171篇
  2018年   1479篇
  2017年   1359篇
  2016年   1412篇
  2015年   1069篇
  2014年   1354篇
  2013年   1468篇
  2012年   1329篇
  2011年   1451篇
  2010年   1379篇
  2009年   1335篇
  2008年   1279篇
  2007年   1276篇
  2006年   1137篇
  2005年   731篇
  2004年   582篇
  2003年   668篇
  2002年   733篇
  2001年   672篇
  2000年   615篇
  1999年   761篇
  1998年   645篇
  1997年   668篇
  1996年   590篇
  1995年   522篇
  1994年   475篇
  1993年   360篇
  1992年   325篇
  1991年   224篇
  1990年   174篇
  1989年   199篇
  1988年   159篇
  1987年   117篇
  1986年   99篇
  1985年   73篇
  1984年   63篇
  1983年   65篇
  1982年   50篇
  1981年   38篇
  1980年   40篇
  1979年   38篇
  1978年   22篇
  1977年   21篇
  1975年   22篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
81.
Unconsolidated sand, gravel and clay deposits near Beihai and in the Leizhou Peninsula in southern China form an unconfined aquifer, aquitard and a confined aquifer. Water and soil samples were collected from the two aquifers in the coastal Beihai area for the determination of chemical compositions, minerals and soluble ions. Hydrogeochemical modeling of three flow paths through the aquitard are carried out using PHREEQC to determine water–rock interactions along the flow paths. The results indicate that the dissolution of anorthite, fluorite, halite, rhodochrosite and CO2, and precipitation of potash feldspar and kaolinite may be occurring when groundwater leaks through the aquitard from the unconfined aquifer to the confined aquifer. Cation exchanges between Na and Ca can also happen along the flow paths.  相似文献   
82.
The Qinghai–Tibet Highway and Railway (the Corridor) across the Qinghai–Tibet Plateau traverses 670 km of permafrost and seasonally frozen-ground in the interior of the Plateau, which is sensitive to climatic and anthropogenic environmental changes. The frozen-ground conditions for engineering geology along the Corridor is complicated by the variability in the near-surface lithology, and the mosaic presence of warm permafrost and talik in a periglacial environment. Differential settlement is the major frost-effect problem encountered over permafrost areas. The traditional classification of frozen ground based on the areal distribution of permafrost is too generalized for engineering purposes and a more refined classification is necessary for engineering design and construction. A proposed classification of 51 zones, sub-zones, and sections of frozen ground has been widely adopted for the design and construction of foundations in the portion of the Corridor studied. The mean annual ground temperature (MAGT), near-surface soil types and moisture content, and active faults and topography are most commonly the primary controlling factors in this classification. However, other factors, such as local microreliefs, drainage conditions, and snow and vegetation covers also exert important influences on the features of frozen ground. About 60% of the total length of the Corridor studied possesses reasonably good frozen-ground conditions, which do not need special mitigative measures for frost hazards. However, other sections, such as warm and ice-rich or -saturated permafrost, particularly in the sections in wetlands, ground improvement measures such as elevated land bridges and passive or proactive cooling techniques need to be applied to ensure the long-term stability of thermally unstable, thick permafrost subsoils, and/or refill with non-frost-susceptible soils. Due to the long-history of the construction and management of the Corridor by various government departments, adverse impacts of construction and operation on the permafrost environment have been resulted. It is recommended that an integrated, executable plan for the routing of major construction projects within this transportation corridor be established and long-term monitoring networks installed for evaluating and mitigating the impact from anthropogenic and climatic changes in frozen-ground conditions.  相似文献   
83.
Experiments at 6.0–7.1 GPa and 1500–1700°C were carried out to explore the boundary conditions of diamond nucleation and growth in pyrrhotite-carbon melt-solutions. Pyrrhotite is one of the main sulfide minerals of the pyrrhotite-pentlandite-chalcopyrite assemblage of mantle rocks and primary inclusions in diamond. Solutions of carbon in sulfide melts oversaturated with respect to diamond at the expense of the dissolution of starting graphite (thermodynamically unstable phase) are formed owing to the difference between the solubilities of graphite and diamond, which increases under the influence of temperature gradients in experimental samples. We determined the fields of carbon solutions in pyrrhotite melt showing labile and metastable oversaturation with respect to diamond, which correspond to the spontaneous nucleation of the diamond phase and diamond growth on seeds, respectively. The linear growth rate of diamond in sulfide-carbon melts is rather high (on average, 10 μ/min during the first 1–2 min from the onset of spontaneous crystallization). The nucleation density is estimated as 180 grains per cubic centimeter. Diamonds crystallized from sulfide melts show octahedral and spinel twin shapes. Diamond polycrystals were synthesized for the first time from a sulfide medium as intergrowths of skeletal (edge) or “cryptocrystalline” microdiamonds, from 1 to 100 μm in size, their spinel twins and, occasionally, polysynthetic (star-shaped) twins. During diamond growth from sulfidecarbon melts on smooth faces of cuboctahedral diamond seeds synthesized in metal systems, smooth-faced layer-by-layer step-like growth was observed on their octahedral (111) faces, whereas growth on the (100) cubic faces produced rough-surfaced layers of intergrown micropyramids, whose axes were oriented normal to the (100) face. The obtained experimental results were applied to the problem of diamond genesis under the conditions of the Earth’s mantle in the framework of the model of carbonate-silicate parental melts with blebs of immiscible sulfide melts.  相似文献   
84.
This paper reports the results of a study of the composition of mica (biotite) crystallizing in the system of phonolite melt-Cl- and F-bearing aqueous fluid at T ~ 850°C, P = 200 MPa, and \(f_{O_2 } \) = Ni-NiO, as well as data on F and Cl partitioning between coexisting phases. It was established that Cl content in mica is significantly lower than in phonolite melt and, especially, in fluid. Fluorine shows a different behavior in this system: its content in mica is always higher than in phonolite melt but lower than in fluid. The mica-melt partition coefficients of Cl and F also behave differently. The Cl partition coefficient gradually increases from 0.17 to 0.33 with increasing Cl content in the system, whereas the partition coefficient of F sharply decreases from 3.0 to 1.0 with increasing total F content. The apparent partition coefficients of F between biotite and groundmass (melt) in various magmatic rocks are usually significantly higher than the experimental values. It was supposed that the higher Bt/glassDF values in natural samples could be related to the influence of later oxidation reactions, reequilibration of biotite at continuously decreasing \(f_{H_2 O} \)/f HF ratio, and an increase in this coefficients with decreasing total F content in the system.  相似文献   
85.
The ages of subcontinental lithospheric mantle beneath the North China and South China cratons are less well-constrained than the overlying crust. We report Re–Os isotope systematics of mantle xenoliths entrained in Paleozoic kimberlites and Mesozoic basalts from eastern China. Peridotite xenoliths from the Fuxian and Mengyin Paleozoic diamondiferous kimberlites in the North China Craton give Archean Re depletion ages of 2.6–3.2 Ga and melt depletion ages of 2.9–3.4 Ga. No obvious differences in Re and Os abundances, Os isotopic ratios and model ages are observed between spinel-facies and garnet-facies peridotites from both kimberlite localities. The Re–Os isotopic data, together with the PGE concentrations, demonstrate that beneath the Archean continental crust of the eastern North China Craton, Archean lithospheric mantle of spinel- to diamond-facies existed without apparent compositional stratification during the Paleozoic. The Mesozoic and Cenozoic basalt-borne peridotite and pyroxenite xenoliths, on the other hand, show geochemical features indicating metasomatic enrichment, along with a large range of the Re–Os isotopic model ages from Proterozoic to Phanerozoic. These features indicate that lithospheric transformation or refertilization through melt-peridotite interaction could be the primary mechanism for compositional changes during the Phanerozoic, rather than delamination or thermal-mechanical erosion, despite the potential of these latter processes to play an important role for the loss of garnet-facies mantle. A fresh garnet lherzolite xenolith from the Yangtze Block has a Re depletion age of ∼1.04 Ga, much younger than overlying Archean crustal rocks but the same Re depletion ages as spinel lherzolite xenoliths from adjacent Mesozoic basalts, indicating Neoproterozoic resetting of the Re–Os system in the South China Craton.  相似文献   
86.
A systematic investigation on silica contents and silicon isotope compositions of bamboos was undertaken. Seven bamboo plants and related soils were collected from seven locations in China. The roots, stem, branch and leaves for each plant were sampled and their silica contents and silicon isotope compositions were determined. The silica contents and silicon isotope compositions of bulk and water-soluble fraction of soils were also measured. The silica contents of studied bamboo organs vary from 0.30% to 9.95%. Within bamboo plant the silica contents show an increasing trend from stem, through branch, to leaves. In bamboo roots the silica is exclusively in the endodermis cells, but in stem, branch and leaves, the silica is accumulated mainly in epidermal cells. The silicon isotope compositions of bamboos exhibit significant variation, from −2.3‰ to 1.8‰, and large and systematic silicon isotope fractionation was observed within each bamboo. The δ30Si values decrease from roots to stem, but then increase from stem, through branch, to leaves. The ranges of δ30Si values within each bamboo vary from 1.0‰ to 3.3‰. Considering the total range of silicon isotope composition in terrestrial samples is only 7‰, the observed silicon isotope variation in single bamboo is significant and remarkable. This kind of silicon isotope variation might be caused by isotope fractionation in a Rayleigh process when SiO2 precipitated in stem, branches and leaves gradually from plant fluid. In this process the Si isotope fractionation factor between dissolved Si and precipitated Si in bamboo (αpre-sol) is estimated to be 0.9981. However, other factors should be considered to explain the decrease of δ30Si value from roots to stem, including larger ratio of dissolved H4SiO4 to precipitated SiO2 in roots than in stem. There is a positive correlation between the δ30Si values of water-soluble fractions in soils and those of bulk bamboos, indicating that the dissolved silicon in pore water and phytoliths in soil is the direct sources of silicon taken up by bamboo roots. A biochemical silicon isotope fractionation exists in process of silicon uptake by bamboo roots. Its silicon isotope fractionation factor (αbam-wa) is estimated to be 0.9988. Considering the distribution patterns of SiO2 contents and δ30Si values among different bamboo organs, evapotranspiration may be the driving force for an upward flow of a silicon-bearing fluid and silica precipitation. Passive silicon uptake and transportation may be important for bamboo, although the role of active uptake of silicic acid by roots may not be neglected. The samples with relatively high δ30Si values all grew in soils showing high content of organic materials. In contrast, the samples with relatively low δ30Si values all grew in soil showing low content of organic materials. The silicon isotope composition of bamboo may reflect the local soil type and growth conditions. Our study suggests that bamboos may play an important role in global silicon cycle.  相似文献   
87.
Three planktonic foraminiferal species Globigerina bulloides, Neogloboquadrina pachyderma (d), and Globorotalia inflata collected from core-tops spanning 35° to 65°N in the North Atlantic were used for U/Ca and Mg/Ca and foraminiferal shell weight analyses. Except for U/Ca in G. bulloides calcified under warm conditions (>∼13 °C), U/Ca ratios in all three studied species increase with decreasing latitude and show strong positive correlations with Mg/Ca ratios. A dissolution effect on planktonic U/Ca is suggested by decreased shell weight and U/Ca and Mg/Ca ratios for shells from very deep water depth (>4.4 km) along the latitudinal transect. G. bulloides from down core samples in the North Atlantic show low U/Ca ratios during the last glacial and high ratios during the Holocene, similar to the Mg/Ca evolution trend. In general, our data indicate that the U incorporation into planktonic foraminiferal carbonates is strongly influenced by calcification temperature, although U/Ca in G. bulloides may be affected by seawater carbonate ion concentration under warm conditions and/or other factors.  相似文献   
88.
The study of granitic plutons of the Baikal Highland and the Tien Shan has made it possible to establish new features of their posthumous (after incorporation into the consolidated Earth’s crust) structural reworking and to understand the implications of the cataclastic flow for the exhumation of the crystalline basement in the studied regions. It is shown that granitic plutons undergo appreciable structural transformation at the stages of tectonic reactivation that is significantly separated in time from the moment of formation of plutons as geological bodies. The 3D cataclastic deformation is the main mode of structural reworking of granitic plutons, while the cataclastic flow is the main form of their mobility. Newly recognized slice structures characterize the volumetric deformation of granites.  相似文献   
89.
Economic concentrations of Fe–Ti oxides occur as massive,conformable lenses or layers in the lower part of the Panzhihuaintrusion, Emeishan Large Igneous Province, SW China. Mineralchemistry, textures and QUILF equilibria indicate that oxidesin rocks of the intrusion were subjected to extensive subsolidusre-equilibration and exsolution. The primary oxide, reconstructedfrom compositions of titanomagnetite in the ores and associatedintergrowths, is an aluminous titanomagnetite (Usp40) with 40wt % FeO, 34 wt % Fe2O3, 16·5 wt % TiO2, 5·3 wt% Al2O3, 3·5 wt % MgO and 0·5 wt % MnO. This compositionis similar to the bulk composition of the oxide ore, as inferredfrom whole-rock data. This similarity strongly suggests thatthe ores formed from accumulation of titanomagnetite crystals,not from immiscible oxide melt as proposed in earlier studies.The occurrence of oxide ores in the lower parts of the Panzhihuaintrusion is best explained by settling and sorting of densetitanomagnetite in the ferrogabbroic parental magma. This magmamust have crystallized Fe–Ti oxides relatively early andabundantly, and is likely to have been enriched in Fe and Tibut poor in SiO2. These features are consistent with fractionationof mantle-derived melts under relatively high pressures (10kbar), followed by emplacement of the residual magma at 5 kbar.This study provides definitive field and geochemical evidencethat Fe–Ti oxide ores can form by accumulation in ferrogabbro.We suggest that many other massive Fe–Ti oxide depositsmay have formed in a similar fashion and that high concentrationsof phosphorus or carbon, or periodic fluctuation of fO2 in themagma, are of secondary importance in ore formation. KEY WORDS: ELIP; Fe–Ti oxide ore; layered intrusion; Panzhihua; QUILF  相似文献   
90.
The structure of anomalously uplifted areas in transverse ridges of the Vema, S o Paulo, and Romanche fracture zones is considered. It is concluded that their formation and eventual development in the present-day structure of the central Atlantic bottom proceeded during two stages. The first stage that corresponds to a short period at the Tortonian-Messinian transition (10 Ma ago) was marked by transportation of deep-seated rocks into the upper part of the lithosphere along thrust faults with mass motion in the meridional direction along the axis of the Mid-Atlantic Ridge. The second stage was characterized by contrasting highamplitude vertical movements from 10 to 3 Ma ago. It is suggested that near-meridional compression in the domains surrounding the Western Tethys in the Tortonian-Messinian resulted in deformation of the upper lithosphere within large transform fracture zones of the central Atlantic. The deformation that occurred 10 Ma ago was a manifestation of the global neotectonic epoch of the Earth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号