首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   0篇
测绘学   3篇
大气科学   8篇
地球物理   24篇
地质学   38篇
海洋学   38篇
天文学   7篇
自然地理   3篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   9篇
  2012年   3篇
  2011年   5篇
  2010年   7篇
  2009年   2篇
  2008年   9篇
  2007年   8篇
  2006年   6篇
  2005年   9篇
  2004年   9篇
  2003年   4篇
  2002年   2篇
  2001年   5篇
  2000年   4篇
  1999年   8篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1987年   2篇
  1985年   1篇
  1982年   1篇
  1966年   1篇
排序方式: 共有121条查询结果,搜索用时 189 毫秒
101.
Fifty-three samples, including brines associated with oil and natural gas reservoirs and groundwater samples from deep boreholes, were collected from the Pacific and Japan Sea coastal regions in Japan. The 129I/127I and 36Cl/Cl ratios, and stable isotopes (δD and δ18O) are compared to investigate differences related to the geotectonic settings of the two regions. The δD and δ18O data indicate that brine and groundwater from the Pacific coastal region reflect mixing of meteoric water with connate seawater in the pores of sedimentary rocks. On the other hand, brine and groundwater from the Japan Sea coastal region have been hydrothermally altered. In particular, brines associated with petroleum accumulations at Niigata and Akita showed the same isotopic characteristics as fluids found in the Kuroko deposits of the Green Tuff region in northeastern Japan. There is little difference in the 36Cl/Cl ratios in brine and groundwater from the Pacific and Japan Sea coasts. Most brine and some deep groundwater, except those from the Pleistocene Kazusa Group, have already reached the average secular equilibrium ratio of 9.9 ± 2.7 × 10−15 for their mudstone and sandstone reservoirs. There was no correlation between the 36Cl/Cl ratios and differences in geotectonic setting between the Pacific and the Japan Sea coast. The molar I/Br ratio suggests that the I in all of water samples was of biogenic origin. The average 129I/127I ratio was 290 ± 130 × 10−15 to 294 ± 105 × 10−15 in both regions, showing no relationship to the different geotectonic settings. The uncontaminated brine and groundwater samples are likely to have retained the original 129I/127I ratios of marine I released from the old organic matter stored in sedimentary rock.  相似文献   
102.
To estimate the spatial distribution of groundwater discharge from the bottom of a small lake of Kumamoto in Japan, we applied continuous radon measurements with a dual loop system and verified the results obtained using the radon method by visual diving surveys. Time‐shifting correction in the dual‐loop system is reasonable to obtain the true radon activity in water. Distributions of radon activity and water temperature in the study area reveal the effects on groundwater discharge and mixing situation of lake water. The estimated discharge zone ascertained using the radon method agrees with the groundwater discharge distribution observed through diving surveys. Although the data resolution of the radon method is much greater than the width of observed discharge zones, the general distribution of groundwater discharge is recognizable. The dual loop system of radon measurement is useful for smaller areas.  相似文献   
103.
In the equatorial plasmasphere, plasma waves are frequently observed. To improve our understanding of the mechanism generating plasma waves from instabilities, a comparison of observations, linear growth-rate calculations, and simulation results is presented. To start the numerical experiments from realistic initial plasma conditions, we use the initial parameters inferred from observational data obtained around the plasma-wave generation region by the Akebono satellite. The linear growth rates of waves of different modes are calculated under resonance conditions, and compared with simulation results and observations. By employing numerical experiments by a particle code, we first show that upper hybrid-, Z-, and whistler-mode waves are excited through instabilities driven by a ring-type velocity distribution. The simulation results suggest a possibility that energetic electrons with energies of some tens of keV confined around the geomagnetic equator are responsible for the observed enhancements of Z- and whistler-mode waves. While the comparison between linear growth-rate calculations and observations shows the different tendency of wave amplitude of Z-mode and whistler-mode waves, the wave amplitude of these wave modes in the simulation results is consistent with the observation.  相似文献   
104.
Ocean acidification results from an increase in the concentrations of atmospheric carbon dioxide (CO2) impacts on marine calcifying species, which is predicted to become more pronounced in the future. By the end of this century, atmospheric pCO2 levels will have doubled relative to the pre‐industrial levels of 280 ppm. However, the effects of pre‐industrial pCO2 levels on marine organisms remain largely unknown. In this study, we investigated the effects of pre‐industrial pCO2 conditions on the size of the pluteus larvae of sea urchins, which are known to be vulnerable to ocean acidification. The larval size of Hemicentrotus pulcherrimus significantly increased when reared at pre‐industrial pCO2 level relative to the present one, and the size of Anthocidaris crassispina larvae decreased as the pCO2 levels increased from the pre‐industrial level to the near future ones after 3 days' exposure. In this study, it is suggested that echinoid larvae responded to pre‐industrial pCO2 levels. Ocean acidification may be affecting some sensitive marine calcifiers even at the present pCO2 level.  相似文献   
105.
To conduct the simulation of oil spills in the Sea of Okhotsk, we developed a three-dimensional, high-resolution ocean circulation model. The model particularly improved the reproducibility of velocity field during the strong stratification period. Particle-tracking experiments with the effects of evaporation and biodegradation were performed using the combined data of daily ocean currents from the present model and the hourly diurnal tidal currents from the tidal model. The results are shown by the relative concentration of the particles averaged over the 8 years of 1998–2005 based on the ensemble forecast idea. For the case of particles released from the Sakhalin II oil field, the particles deployed in September–January are carried southward by the East Sakhalin Current, finally arriving at the Hokkaido coast, after 60–90 days. The particles deployed in March–August are diffused offshore by the synoptic wind drift, and hardly transported to regions south of Sakhalin. For the case of particles released from the region off Prigorodnoye, the oil export terminal, after the diffusion by the synoptic wind drift, a part of them are carried offshore of Hokkaido by the Soya Warm Current. The particles released in November–April flow out to the Japan Sea through the Soya Strait, mainly by the synoptic wind drift and secondly by the diffusion due to strong tidal currents around the Soya Strait. By considering the effects of evaporation and biodegradation, the relative concentration of the particles is considerably decreased before arriving at the Hokkaido coast, particularly in the case of drift from the Sakhalin II oil field.  相似文献   
106.
Coastal polynyas off East Queen Maud Land in Antarctica are examined using NOAA AVHRR infrared data. From image analyses, two locations of coastal polynyas in this region are identified; one in Breid Bay and the other along the shelf break. The areal coverage of the Breid Bay polynya is significantly related to the strength of katabatic winds, which maintain their strength over the coastal sea due to land topography favoring for their confluence, thereby being capable of removing newly formed ice. Land fast ice in the eastern part of the bay also plays an additional role in the formation mechanism. It is also found that the areal coverage of coastal polynyas in this region fluctuate coherently. Moreover, these fluctuations correspond to the synoptic index, which measures the strength of the offshore wind, with their peaks closely associated with the areal peaks. These facts strongly suggest the influence of synoptic scale weather on the formation and maintenance of polynyas in this region.  相似文献   
107.
The Asachinskoe epithermal Au‐Ag deposit is a representative low‐sulfidation type of deposit in Kamchatka, Russia. In the Asachinskoe deposit there are approximately 40 mineralized veins mainly hosted by dacite–andesite stock intrusions of Miocene–Pliocene age. The veins are emplaced in tensional cracks with a north orientation. Wall‐rock alteration at the bonanza level (170–200 m a.s.l.) consists of the mineral assemblage of quartz, pyrite, albite, illite and trace amounts of smectite. Mineralized veins are well banded with quartz, adularia and minor illite. Mineralization stages in the main zone are divided into stages I–IV. Stage I is relatively barren quartz–adularia association formed at 4.7 ± 0.2 Ma (K‐Ar age). Stage II consists of abundant illite, Cu‐bearing cryptomelane and other manganese oxides and hydroxides, electrum, argentite, quartz, adularia and minor rhodochrosite and calcite. Stage III, the main stage of gold mineralization (4.5–4.4 ± 0.1–3.1 ± 0.1 Ma, K‐Ar age), consists of a large amount of electrum, naumannite and Se‐bearing polybasite with quartz–adularia association. Stage IV is characterized by hydrothermal breccia, where electrum, tetrahedrite and secondary covellite occur with quartz, adularia and illite. The concentration of Au+Ag in ores has a positive correlation with the content of K2O + Al2O3, which is controlled by the presence of adularia and minor illite, and both Hg and Au also have positive correlations with the light rare‐earth elements. Fluid inclusion studies indicate a salinity of 1.0–2.6 wt% NaCl equivalent for the whole deposit, and ore‐forming temperatures are estimated as approximately 160–190°C in stage III of the present 218 m a.s.l. and 170–180°C in stage IV of 200 m a.s.l. The depth of ore formation is estimated to be 90–400 m from the paleo‐water table for stage IV of 200 m a.s.l., if a hydrostatic condition is assumed. An increase of salinity (>CNaCl≈ 0.2 wt%) and decrease of temperature (>T ≈ 30°C) within a 115‐m vertical interval for the ascending hydrothermal solution is calculated, which is interpreted as due to steam loss during fluid boiling. Ranges of selenium and sulfur fugacities are estimated to be logfSe2 = ?17 to ?14.5 and logfS2 = ?15 to ?12 for the ore‐forming solution that was responsible for Au‐Ag‐Se precipitation in stage III of 200 m a.s.l. Separation of Se from S‐Se complex in the solution and its partition into selenides could be due to a relatively oxidizing condition. The precipitation of Au‐Ag‐Se was caused by boiling in stage III, and the precipitation of Au‐Ag‐Cu was caused by sudden decompression and boiling in stage IV.  相似文献   
108.
The main objective of the present work is to present methods to obtain detailed surveys of the shape of the quasigeoid and of deflections of the vertical from the point of view of three-dimensional constituting and rigorous computing of the astrogeodetic network. The error of an astrogravimetric leveling line in the most general case, i.e., in the shape of a polygon has been estimated. This error can be tested and checked by comparison of gravimetric deflections of the vertical with astrogeodetic deflections, i.e., by computation of the error of astrogeodetic gravimetric deflection of the vertical. The astrogeodetic deflections of the vertical required for the horizontal angle correction in triangulation and traverse are easily obtained by interpolation. An example of astrogravimetric leveling demonstrates the possibility to carry out an astrogravimetric leveling with any required accuracy, for example, with the accuracy of ±1 ml/1000 km. In connection with height determination from PGS a procedure of constituting a well-distributed set of fiducial ground stations by using high-precision astrogravimetric methods together with millimeter-level accuracy astrogravimetric leveling to test various space systems observations has been suggested.  相似文献   
109.
Intensive CTD observations that resolve the mean and tidal components were done with a total of 129 casts in summer of 2001 at Bussol’ Strait. Based on these data and all the available historical data, we have revealed the outflow from Bussol’ Strait to the Pacific and the significant diapycnal mixing in the strait. In the range 27.0−27.3σ θ , the water property in Bussol’ Strait is almost identical to that of the Kuril Basin Water (KBW). The KBW out of Bussol’ Strait forms a water mass front with the East Kamchatka Current Water (EKCW). This front also corresponds to the front of the Oyashio Current. In the lower part of the intermediate layer (27.3−27.6σ θ ), part of the water in the strait is characterized by lower temperature, lower salinity, and higher dissolved oxygen than that of KBW and EKCW, which can be explained only by the diapycnal mixing. The strong diapycnal mixing in the strait can also be shown by the density inversion, occurrence frequency of which corresponds well to the amplitude distribution of the diurnal current. In the density range 26.7−26.8σ θ , the water in Bussol’ Strait has the lowest potential vorticity, suggesting that it is a source region of the low potential vorticity water. Seasonal change of the water can reach up to a density of 26.8σ θ around Bussol’ Strait. This leads us to propose that the combination of winter convection and local tidal mixing leads to effective ventilation of the intermediate layer.  相似文献   
110.
The dissolved inorganic carbon (DIC) and related chemical species have been measured from 1992 to 2001 at Station KNOT (44°N, 155°E) in the western North Pacific subpolar region. DIC (1.3∼2.3 µ mol/kg/yr) and apparent oxygen utilization (AOU, 0.7∼1.8 µmol/kg/yr) have increased while total alkalinity remained constant in the intermediate water (26.9∼27.3σθ). The increases of DIC in the upper intermediate water (26.9∼27.1σθ) were higher than those in the lower one (27.2∼ 27.3σθ). The temporal change of DIC would be controlled by the increase of anthropogenic CO2, the decomposition of organic matter and the non-anthropogenic CO2 absorbed at the region of intermediate water formation. We estimated the increase of anthropogenic CO2 to be only 0.5∼0.7 µmol/kg/yr under equilibrium with the atmospheric CO2 content. The effect of decomposition was estimated to be 0.8 ± 0.7 µmol/kg/yr from AOU increase. The remainder of non-anthropogenic CO2 had increased by 0.6 ± 1.1 µmol/kg/yr. We suggest that the non-anthropogenic CO2 increase is controlled by the accumulation of CO2 liberated back to atmosphere at the region of intermediate water formation due to the decrease of difference between DIC in the winter mixed layer and DIC under equilibrium with the atmospheric CO2 content, and the reduction of diapycnal vertical water exchange between mixed layer and pycnocline waters. In future, more accurate and longer time series data will be required to confirm our results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号