首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
大气科学   31篇
地球物理   9篇
地质学   8篇
自然地理   2篇
  2022年   1篇
  2019年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2005年   1篇
  2004年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1988年   1篇
  1987年   2篇
  1973年   1篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
11.
The stabilized northwestern (NW) Negev vegetated linear dunes (VLD) of Israel extend over 1300 km2 and form the eastern end of the Northern Sinai – NW Negev Erg. This study aimed at identifying primary and subsequent dune incursions and episodes of dune elongation by investigating dune geomorphology, stratigraphy and optically stimulated luminescence (OSL) dating. Thirty-five dune and interdune exposed and drilled section were studied and sampled for sedimentological analyses and OSL dating, enabling spatial and temporal elucidation of the NW Negev dunefield evolution.In a global perspective the NW Negev dunefield is relatively young. Though sporadic sand deposition has occurred during the past 100 ka, dunes began to accumulate over large portions of the dunefield area only at ~23 ka. Three main chronostratigraphic units, corresponding to three (OSL) age clusters, were found throughout most of the dunefield, indicating three main dune mobilizations: late to post last glacial maximum (LGM) at 18–11.5 ka, late Holocene (2–0.8 ka), and modern (150–8 years). The post-LGM phase is the most extensive and it defined the current dunefield boundaries. It involved several episodes of dune incursions and damming of drainage systems. Dune advancement often occurred in rapid pulses and the orientation of VLD long axes indicates similar long-term wind directions. The late Holocene episode included partial incursion of new sand, reworking of Late Pleistocene dunes as well as limited redeposition. The modern sand movement only reactivated older dunes and did not lengthen VLDs.This aeolian record fits well with other regional aeolian sections. We suggest that sand supply and storage in Sinai was initiated by the Late Pleistocene exposure of the Nile Delta sands. Late Pleistocene winds, substantially stronger than those usually prevailing since the onset of the Holocene, are suggested to have transported the dune sands across Sinai and into the northwestern Negev.Our results demonstrate the sensitivity of vegetated linear dunes located along the (northern) fringe of the sub-tropical desert belt to climate change (i.e. wind) and sediment supply.  相似文献   
12.
13.
Monthly mean total vertical column abundances of acetylene have been determined from series of infrared solar spectra recorded at the Jungfraujoch station, Switzerland, between June 1986 and April 1991. The data have been obtained by nonlinear least-squares fittings of the 5 band R19 transition of C2H2 at 776.0818 cm-1. The average of 22 monthly mean total vertical columns of C2H2 retrieved during that time interval of almost 5 years was found to be equal to (1.81±0.12)×1015 molec/cm2, which corresponds to an average mixing ratio of (0,22±0.013) ppbv (parts per billion by volume) in a troposphere extending from the altitude of the station (3.58 km), up to 10.5 km. Despite the large variability found from year to year, a least-squares sine fit to the data reveals a seasonal variation with an amplitude of about ±40% of the mean; the maximum occurs during mid-winter and the minimum in the summer. The present results are compared critically with similar in-situ data found in the literature. A sinusoidal fit to all such free troposphere measurements made in-situ between 30°N and 60°N indicates good agreement in shape and phase with the seasonal variation derived above the Jungfraujoch, but their average column abundance, 2.3×1015 molec/cm2, is about 30% higher; this difference is explained on the basis of non-upwelling meteorological conditions generally prevailing during ground-based remote solar observations.  相似文献   
14.
Despite growing global attention to the development of strategies and policy for climate change adaptation, there has been little allowance for input from Indigenous people. In this study we aimed to improve understanding of factors important in integration of Yolngu perspectives in planning adaptation policy in North East Arnhem Land (Australia). We conducted workshops and in-depth interviews in two ‘communities’ to develop insight into Yolngu peoples’ observations and perspectives on climate change, and their ideas and preferences for adaptation. All participants reported observing changes in their ecological landscape, which they attributed to mining, tourism ‘development’, and climate change. ‘Strange changes’ noticed particularly in the last five years, had caused concern and anxiety among many participants. Despite their concern about ecological changes, participants were primarily worried about other issues affecting their community's general welfare. The results suggest that strategies and policies are needed to strengthen adaptive capacity of communities to mitigate over-arching poverty and well-being issues, as well as respond to changes in climate. Participants believed that major constraints to strengthening adaptive capacity had external origins, at regional, state and federal levels. Examples are poor communication and engagement, top-down institutional processes that allow little Indigenous voice, and lack of recognition of Indigenous culture and practices. Participants’ preferences for strategies to strengthen community adaptive capacity tended to be those that lead towards greater self-sufficiency, independence, empowerment, resilience and close contact with the natural environment. Based on the results, we developed a simple model to highlight main determinants of community vulnerability. A second model highlights components important in facilitating discourse on enhancing community capacity to adapt to climatic and other stressors.  相似文献   
15.
Multiscale analysis of vegetation surface fluxes: from seconds to years   总被引:2,自引:0,他引:2  
The variability in land surface heat (H), water vapor (LE), and CO2 (or net ecosystem exchange, NEE) fluxes was investigated at scales ranging from fractions of seconds to years using eddy-covariance flux measurements above a pine forest. Because these fluxes significantly vary at all these time scales and because large gaps in the record are unavoidable in such experiments, standard Fourier expansion methods for computing the spectral and cospectral statistical properties were not possible. Instead, orthonormal wavelet transformations are proposed and used. The are ideal at resolving process variability with respect to both scale and time and are able to isolate and remove the effects of missing data (or gaps) from spectral and cospectral calculations. Using the spectra, we demonstrated unique aspects in three appropriate ranges of time scales: turbulent time scales (fractions of seconds to minutes), meteorological time scales (hour to weeks), and seasonal to interannual time scales corresponding to climate and vegetation dynamics. We have shown that: (1) existing turbulence theories describe the short time scales well, (2) coupled physiological and transport models (e.g. CANVEG) reproduce the wavelet spectral characteristics of all three land surface fluxes for meteorological time scales, and (3) seasonal dynamics in vegetation physiology and structure inject strong correlations between land surface fluxes and forcing variables at monthly to seasonal time scales. The broad implications of this study center on the possibility of developing low-dimensional models of land surface water, energy, and carbon exchange. If the bulk of the flux variability is dominated by a narrow band or bands of modes, and these modes “resonate” with key state and forcing variables, then low-dimensional models may relate these forcing and state variables to NEE and LE.  相似文献   
16.
Series of high-resolution infrared solar spectra recorded at the International Scientific Station of the Jungfraujoch, Switzerland, between 06/1986 and 11/1992, and at Kitt Peak National Observatory, Tucson, Arizona (U.S.A.), from 12/1980 to 04/1992, have been analyzed to provide a comprehensive ensemble of vertical column abundances of CHCIF2 (HCFC-22; Freon-22) above the European and the North American continents. The columns were derived from nonlinear least-squares curve fittings between synthetic spectra and the observations containing the unresolved 2v 6 Q-branch absorption of CHCIF2 at 829.05 cm–1. The changes versus time observed in these columns were modeled assuming both an exponential and a linear increase with time. The exponential rates of increase at one-sigma uncertainties were found equal to (7.0±0.35)%/yr for the Junfraujoch data and (7.0±0.23)%/yr for the Kitt Peak data. The exponential trend of 7.0%/yr found at both stations widely separated in location can be considered as representative of the global increase of the CHCIF2 burden in the Earth's atmosphere during the period 1980 to 1992. When assuming two realistic vertical volume mixing ratio profiles for CHCIF2 in the troposphere, one quasi constant and the other decreasing by about 13% from the ground to the tropopause, the concentrations for mid-1990 were found to lie between 97 and 111 pptv (parts per trillion by volume) at the 3.58 km altitude of the Jungfraujoch and between 97 and 103 pptv at Kitt Peak, 2.09 km above sea level. Corresponding values derived from calculations using a high vertical resolution-2D model and recently compiled HCFC-22 releases to the atmosphere, were equal to 107 and 105 pptv, respectively, in excellent agreement with the measurements. The model calculated lifetime of CHCIF2 was found equal to 15.6 years. The present results are compared critically with similar data found in the literature. On average, the concentrations found here are lower by 15–20% than those derived from in situ investigations; this difference cannot be explained by the absolute uncertainty of ±11% assigned presently to the infrared remote measurements.  相似文献   
17.
Second-order closure models for the canopy sublayer (CSL) employ aset of closure schemes developed for `free-air' flow equations andthen add extra terms to account for canopy related processes. Muchof the current research thrust in CSL closure has focused on thesecanopy modifications. Instead of offering new closure formulationshere, we propose a new mixing length model that accounts for basicenergetic modes within the CSL. Detailed flume experiments withcylindrical rods in dense arrays to represent a rigid canopy areconducted to test the closure model. We show that when this lengthscale model is combined with standard second-order closureschemes, first and second moments, triple velocity correlations,the mean turbulent kinetic energy dissipation rate, and the wakeproduction are all well reproduced within the CSL provided thedrag coefficient (CD) is well parameterized. The maintheoretical novelty here is the analytical linkage betweengradient-diffusion closure schemes for the triple velocitycorrelation and non-local momentum transfer via cumulant expansionmethods. We showed that second-order closure models reproducereasonably well the relative importance of ejections and sweeps onmomentum transfer despite their local closure approximations.Hence, it is demonstrated that for simple canopy morphology (e.g.,cylindrical rods) with well-defined length scales, standard closureschemes can reproduce key flow statistics without much revision.When all these results are taken together, it appears that thepredictive skills of second-order closure models are not limitedby closure formulations; rather, they are limited by our abilityto independently connect the drag coefficient and the effectivemixing length to the canopy roughness density. With rapidadvancements in laser altimetry, the canopy roughness densitydistribution will become available for many terrestrialecosystems. Quantifying the sheltering effect, the homogeneity andisotropy of the drag coefficient, and more importantly, thecanonical mixing length, for such variable roughness density isstill lacking.  相似文献   
18.
The flux of sensible heat from the land surface is related to the average rate of dissipation of temperature fluctuations in the atmospheric surface layer through the temperature variance budget equation. In many cases it is desirable to estimate the heat flux from measurement or inference of the dissipation rate. Here we study how the dissipation rate scales with atmospheric stability, using three inertial range methods to calculate the dissipation rate: power spectra, second order structure functions, and third order structure functions. Experimental data are analyzed from a pair of field experiments, during which turbulent fluctuations of velocity and temperature were measured over a broad range of neutral and unstable atmospheric flows. It is shown that the temperature dissipation rate scales with a single convective power law continuously from near-neutral to strongly unstable stratification. The dissipation scaling is found to nearly match production in the near-neutral region, but to be consistently lower than production in the more convective regimes. The convective scaling is shown to offer a simplified means of computing sensible heat flux from the dissipation rate of temperature variance.Also at Johns Hopkins University, Baltimore, MarylandAlso at Los Alamos National Laboratory, Los Alamos, New Mexico.  相似文献   
19.
Orthonormal wavelet expansions are applied to atmospheric surface layer velocity measurements. The effect of intermittent events on the energy spectrum of the inertial subrange is investigated through analysis of wavelet coefficients. The local nature of the orthonormal wavelet transform in physical space makes it possible to identify a relationship between the inertial subrange slope of the local wavelet spectrum and a simple indicator (i.e. the local variance of the signal) of local intermittency buildup. The slope of the local wavelet energy spectrum in the inertial subrange is shown to be sensitive to the presence of intermittent events. During well developed intermittent events (coherent structures), the slope of the energy spectrum is somewhat steeper than -5/3, while in less active regions the slope is found to be flatter than -5/3. When the slopes of local wavelet spectra are ensemble averaged, a slope of -5/3 is recovered for the inertial subrange.  相似文献   
20.
Since 1984, about 15000 high quality infrared solar spectra have beenrecorded with state-of-the-art grating and Fourier transform spectrometersat the International Scientific Station of the Jungfraujoch, Switzerland.Nonlinear least squares spectral curve fitting of selected microwindowscontaining isolated and well characterized lines of 20 telluric gases haveallowed to retrieve their total vertical column abundances above thestation, leading to observational data bases essential to derive long- andshort-term changes experienced by these species during the last 12 years. Inthis paper, we focus on atmospheric gases of particular interest within thecontext of the EUROTRAC/TOR (Tropospheric Ozone Research) project; secularevolution as well as seasonal cycles of the minor constituentsCH4, CO and of the trace gasesC2H6, OCS, C2H2, HCNand H2CO are reported and discussed. The long-livedN2O is included as a tracer of the dynamic activity of theatmosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号