首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   1篇
测绘学   2篇
地球物理   9篇
地质学   5篇
海洋学   1篇
天文学   20篇
自然地理   13篇
  2021年   1篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   6篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   8篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有50条查询结果,搜索用时 546 毫秒
31.
Quartz-hosted melt inclusions from latite dykes of the Eocene El Salvador copper porphyry system in northern Chile display wide ranges in both boron concentration (15–155 p.p.m. B) and isotope composition (δ11B −7 to +12‰; n  = 10), likely reflecting slab-derived fluid input from seawater-altered oceanic crust. In contrast, the major Miocene tin-silver and tin porphyry systems in the Bolivian back-arc region (Cerro Rico de Potosi, Chorolque, Llallagua) have distinctly different melt inclusion compositions with δ11B of −11.4 ± 2.7‰ ( n  = 10), and magmatic boron enrichment up to several hundred p.p.m. B. The `seawater' signature in the El Salvador melt inclusions explains the oxidized mineral assemblage of the copper porphyry system, as opposed to the more reduced nature of the Bolivian tin porphyry systems, which reflect intracrustal melting of pelitic rocks.  相似文献   
32.
33.
Further Characterisation of the 91500 Zircon Crystal   总被引:28,自引:2,他引:28  
This paper reports the results from a second characterisation of the 91500 zircon, including data from electron probe microanalysis, laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), secondary ion mass spectrometry (SIMS) and laser fluorination analyses. The focus of this initiative was to establish the suitability of this large single zircon crystal for calibrating in situ analyses of the rare earth elements and oxygen isotopes, as well as to provide working values for key geochemical systems. In addition to extensive testing of the chemical and structural homogeneity of this sample, the occurrence of banding in 91500 in both backscattered electron and cathodoluminescence images is described in detail. Blind intercomparison data reported by both LA-ICP-MS and SIMS laboratories indicate that only small systematic differences exist between the data sets provided by these two techniques. Furthermore, the use of NIST SRM 610 glass as the calibrant for SIMS analyses was found to introduce little or no systematic error into the results for zircon. Based on both laser fluorination and SIMS data, zircon 91500 seems to be very well suited for calibrating in situ oxygen isotopic analyses.  相似文献   
34.
Broad-band data from South American earthquakes recorded by Californian seismic networks are analysed using a newly developed seismic wave migration method—the slowness backazimuth weighted migration (SBWM). Using the SBWM, out-of-plane seismic P -wave reflections have been observed. The reflection locations extend throughout the Earth's lower mantle, down to the core–mantle boundary (CMB) and coincide with the edges of tomographically mapped high seismic velocities. Modelling using synthetic seismograms suggests that a narrow (10–15 km) low- or high-velocity lamella with about 2 per cent velocity contrast can reproduce the observed reflected waveforms, but other explanations may exist. Considering the reflection locations and synthetic modelling, the observed out-of-plane energy is well explained by underside reflections off a sharp reflector at the base of the subducted lithosphere. We also detect weaker reflections corresponding to the tomographically mapped top of the slab, which may arise from the boundary between the Nazca plate and the overlying former basaltic oceanic crust. The joint interpretation of the waveform modelling and geodynamic considerations indicate mass flux of the former oceanic lithosphere and basaltic crust across the 660 km discontinuity, linking processes and structure at the top and bottom of the Earth's mantle, supporting the idea of whole mantle convection.  相似文献   
35.
36.
We investigate fracture‐induced attenuation anisotropy in a cluster of events from a microseismic dataset acquired during hydraulic fracture stimulation. The dataset contains 888 events of magnitude ?3.0 to 0.0. We use a log‐spectral‐amplitude‐ratio method to estimate change in over a half‐hour time period where fluid is being injected and an increase in fracturing from S‐wave splitting analysis has been previously inferred. A Pearson's correlation analysis is used to assess whether or not changes in attenuation with time are statistically significant. P‐waves show no systematic change in during this time. In contrast, S‐waves polarised perpendicular to the fractures show a clear and statistically significant increase with time, whereas S‐waves polarised parallel to the fractures show a weak negative trend. We also compare between the two S‐waves, finding an increase in with time. A poroelastic rock physics model of fracture‐induced attenuation anisotropy is used to interpret the results. This model suggests that the observed changes in t* are related to an increase in fracture density of up to 0.04. This is much higher than previous estimates of 0.025 ± 0.002 based on S‐wave velocity anisotropy, but there is considerably more scatter in the attenuation measurements. This could be due to the added sensitivity of attenuation measurement to non‐aligned fractures, fracture shape, and fluid properties. Nevertheless, this pilot study shows that attenuation measurements are sensitive to fracture properties such as fracture density and aspect ratio.  相似文献   
37.
38.
39.
Journal of Seismology - Monitoring small magnitude induced seismicity requires a dense network of seismic stations and high-quality recordings in order to precisely determine events’...  相似文献   
40.
We argue for implementing star formation on a viscous time-scale in hydrodynamical simulations of disc galaxy formation and evolution. Modelling two-dimensional isolated disc galaxies with the Bhatnagar–Gross–Krook (BGK) hydrocode, we verify the analytic claim of various authors that if the characteristic time-scale for star formation is equal to the viscous time-scale in discs, the resulting stellar profile is exponential on several scalelengths whatever the initial gas and dark matter profile. This casts new light on both numerical and semi-analytical disc formation simulations that either (a) commence star formation in an already exponential gaseous disc, (b) begin a disc simulation with conditions known to lead to an exponential, i.e. the collapse of a spherically symmetric nearly uniform sphere of gas in solid-body rotation under the assumption of specific angular momentum conservation, or (c) in simulations performed in a hierarchical context, tune their feedback processes to delay disc formation until the dark matter haloes are slowly evolving and without much substructure so that the gas has the chance to collapse under conditions known to give exponentials. In such models, star formation follows a Schmidt-like law, which for lack of a suitable time-scale, resorts to an efficiency parameter. With star formation prescribed on a viscous time-scale, however, we find gas and star fractions after ∼12 Gyr that are consistent with observations without having to invoke a 'fudge factor' for star formation. Our results strongly suggest that despite our gap in understanding the exact link between star formation and viscosity, the viscous time-scale is indeed the natural time-scale for star formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号