首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   4篇
测绘学   4篇
天文学   2篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
针对卫星导航抗干扰需求,研究了基于自适应波束形成的多波束抗干扰技术. 为了解决传统固定多波束抗干扰方法在波束数目受限时无法兼顾所有导航卫星信号导致接收性能下降的问题,提出了一种基于K-means聚类算法的动态指向多波束抗干扰方法. 建立天线阵列进行仿真,结果表明,该方法在接收的北斗卫星信号数目多于波束数目时,抗干扰性能优于传统方法.   相似文献   
2.
“墨子号”卫星是2011年中科院空间科学战略性先导科技专项首批批准的五颗科学实验卫星之一,旨在建立卫星与地面远距离量子科学实验平台,并在此平台上完成空间大尺度量子科学实验任务.作为一颗科学卫星,它已经为中国在空间量子通信领域奠定了基础,受到国内外的普遍关注.2019年1月起,“墨子号”卫星开始进入延寿期工作,该卫星仍然承担着繁忙的拓展实验任务,包括国际合作实验任务等.“墨子号”卫星在轨空间安全问题成为“墨子号”卫星团队的关注点之一.本文基于国际空间碎片或空间目标数据信息,结合“墨子号”卫星星历数据,仿真了2020年3月17日-3月24日,“墨子号”最可能遭遇的空间碎片或空间目标情况,并给出了一些重要参数结果,对“墨子号”卫星运行具有参考作用.   相似文献   
3.
先进天基太阳天文台(Advanced Space-based Solar Observatory, ASO-S)卫星姿控分系统的主要任务是实现高精度、高稳定度对日指向控制. ASO-S卫星的科学载荷中,白光望远镜(White-light Solar Telescope, WST)前端配置了太阳导行镜(Guide Telescope, GT)稳像系统,利用正交分布光电二极管组成的边缘探测器测量导行镜光轴与太阳中心的偏差角.提出了一种将GT测量值引入姿态控制闭环的控制方法:利用星敏陀螺定姿算法获得卫星-太阳方向姿态偏差, GT测量值确定非卫星-太阳方向姿态偏差;以4斜装反作用轮组为执行机构,进行三轴零动量稳定姿态控制.通过数学仿真验证,基于GT测量值的姿态控制器在非卫星-太阳方向的绝对指向精度优于2′′、相对姿态稳定度优于1′′/60 s,满足ASO-S卫星高精度高稳定度的对日指向要求.  相似文献   
4.
CX-6(02)微纳卫星超分辨率成像   总被引:1,自引:0,他引:1  
面向微纳卫星高分辨率对地遥感,将超分辨率成像应用于中国整星60公斤级的CX-6(02)微纳卫星设计中,解决因体积和重量限制导致传统长焦距、大口径成像载荷无法应用于微纳卫星的问题。图像获取上,采用高帧频面阵CMOS探测器对同一地物目标多次曝光的方式,利用卫星姿态控制偏差和地速补偿来获得多帧具有亚像元位移的图像;超分辨率重建算法上,在变分贝叶斯框架下提出加权双向差分模型,提高先验概率模型的方向约束性,削弱观测方程求解的病态性。CX-6(02)星成像数据实验结果表明,本文的图像采样方法可获得较为充分的亚像元信息;相比传统的L1范数先验和全变分先验的变分贝叶斯超分辨算法重建结果,本文重建结果对反卷积运算导致的噪声放大具有更好的抑制作用,可获得两倍分辨率提升,有效提高数据质量和应用价值。  相似文献   
5.
全球碳盘点卫星遥感监测方法、进展与挑战   总被引:2,自引:0,他引:2  
以全球变暖为主要特征的气候变化已成为全球性环境问题,对全球可持续发展带来严峻挑战。2015年《巴黎协定》确定了自2020年后国家自主贡献的减排方式,并从2023年开始每5 a开展一次全球碳盘点。2019年第49届IPCC全会明确增加了基于卫星遥感的排放清单校验方法。欧盟、美国、日本、加拿大等正在大力发展温室气体排放的MVS(Monitoring and Verification Support)能力。本文调研分析了全球碳盘点对卫星遥感技术的需求,介绍了全球碳盘点卫星遥感的技术原理,梳理了温室气体卫星遥感、生态系统碳源汇卫星遥感估算、人为源碳排放卫星遥感、碳通量同化估算等全球碳盘点卫星遥感核心环节的研究现状与进展,分析了当前卫星遥感技术对全球碳盘点任务的支撑能力,并结合国内外发展趋势,针对性地提出中国的碳监测卫星计划方案,并展望了中国开展全球碳盘点卫星遥感监测重点任务,期望为中国全球碳盘点卫星遥感体系建设提供思路与方案。  相似文献   
6.
作为中国首颗综合性太阳探测卫星的先进天基太阳天文台(Advanced Space-based Solar Observatory, ASO-S)于北京时间2022年10月9日7时43分在酒泉卫星发射中心成功发射. 扼要介绍ASO-S卫星提出的背景、卫星的研制历程、科学目标、载荷构成、任务总体以及卫星研制的组织架构, 并对卫星的运行和科学产出略作展望.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号