首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   86篇
  国内免费   18篇
测绘学   5篇
大气科学   14篇
地球物理   135篇
地质学   148篇
海洋学   18篇
天文学   1篇
综合类   5篇
自然地理   11篇
  2023年   8篇
  2022年   11篇
  2021年   25篇
  2020年   24篇
  2019年   14篇
  2018年   25篇
  2017年   24篇
  2016年   14篇
  2015年   22篇
  2014年   31篇
  2013年   31篇
  2012年   18篇
  2011年   24篇
  2010年   15篇
  2009年   14篇
  2008年   6篇
  2007年   16篇
  2006年   6篇
  2005年   1篇
  2004年   1篇
  2002年   3篇
  2000年   1篇
  1990年   3篇
排序方式: 共有337条查询结果,搜索用时 31 毫秒
1.
蒸发皿中水面蒸发氢氧同位素分馏的实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
气象要素与蒸发密切相关,通过室内外不同气象条件下的器皿水蒸发实验,获得了水面蒸发氢氧稳定同位素分馏因子与气象要素的关系。实验结果表明,随着蒸发的进行,剩余水体中逐渐富集重同位素;自由水体蒸发同位素分馏在垂线上有分层现象,表层水体同位素值比垂线平均的同位素值略富集;不同温度条件下的室内蒸发实验中,温度越高,液-气间分馏系数越小,相应于同一剩余水体体积比,剩余水体稳定同位素值则越低。室外器皿水自由蒸发实验中得出的蒸发线方程斜率较大地偏离了当地降水线,表明实验期间水体蒸发分馏作用较明显。该研究为进一步揭示水体蒸发分馏规律提供了可靠的实验依据。  相似文献   
2.
为研究地铁建设对济南白泉泉群的影响,在综合分析白泉泉域地质、水文地质条件的基础上,假定研究区岩溶强径流带位置及水力性质,利用FEFLOW软件建立地下水流数值模型。以规划地铁M1号线为研究对象,分析了济南东站、梁王站、梁王东站分别施工及3个站同时施工4种情景下,采用施工降水或施工降水+人工回灌两种施工方式对白泉泉群流量的影响。结果表明:单独采用施工降水的施工方式使得白泉泉群流量衰减,其中3个站同时施工对泉流量的影响最大,泉流量最大衰减达5.48%;各站分别施工时,济南东站对泉流量影响最大,泉流量较未施工时减少了0.043×104 m3/d。采用施工降水+人工回灌的施工方式,能够有效缓解泉流量的衰减,各车站施工时的泉流量衰减由仅施工降水时的2.26%~5.48%降低至0.08%~1.21%。岩溶强径流带有利于地下水形成优势径流,促进白泉泉群补给,一定程度上缓解因地铁施工引起的泉流量衰减。  相似文献   
3.
This paper presents an alternative Boussinesq equation considering hysteresis effect via a third‐order derivative term. By introducing an improved moisture–pressure retention function, this equation describes, with reasonable precision, groundwater propagation in coastal aquifers subject to Dirichlet boundary condition of different oscillation frequencies. Test results confirmed that it is necessary to consider horizontal and vertical flows in unsaturated zone, because of their variable influences on hysteresis. Hysteresis in unsaturated zone can affect the water table wave number of groundwater wave motion, such as wave damping rate and phase lag. Oscillations with different periods exert different hysteresis effect on wave propagation. Truncation/shrinkage of unsaturated zones also affects the strength of hysteresis. These impacts can be reflected in the alternative Boussinesq equation by adjusting the parameter representing the variation rate of moisture associated with pressure change, as opposed to traditional computationally expensive hysteresis algorithms. The present Boussinesq equation is simple to use and can provide feasible basis for future coupling of groundwater and surface water models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
4.
Accepting the concept of standardization introduced by the standardized precipitation index, similar methodologies have been developed to construct some other standardized drought indices such as the standardized precipitation evapotranspiration index (SPEI). In this study, the authors provided deep insight into the SPEI and recognized potential deficiencies/limitations in relating to the climatic water balance it used. By coupling another well‐known Palmer drought severity index (PDSI), we proposed a new standardized Palmer drought index (SPDI) through a moisture departure probabilistic approach, which allows multi‐scalar calculation for accurate temporal and spatial comparison of the hydro‐meteorological conditions of different locations. Using datasets of monthly precipitation, temperature and soil available water capacity, the moisture deficit/surplus was calculated at multiple temporal scales, and a couple of techniques were adopted to adjust corresponding time series to a generalized extreme value distribution out of several candidates. Results of the historical records (1900–2012) for diverse climates by multiple indices showed that the SPDI was highly consistent and correlated with the SPEI and self‐calibrated PDSI at most analysed time scales. Furthermore, a simple experiment of hypothetical temperature and/or precipitation change scenarios also verified the effectiveness of this newly derived SPDI in response to climate change impacts. Being more robust and preferable in spatial consistency and comparability as well as combining the simplicity of calculation with sufficient accounting of the physical nature of water supply and demand relating to droughts, the SPDI is promising to serve as a competent reference and an alternative for drought assessment and monitoring. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
5.
Regional drought frequency analysis was carried out in the Poyang Lake basin (PLB) from 1960–2014 based on three standardized drought indices: the standardized precipitation index (SPI), the standardized precipitation evapotranspiration index (SPEI) and the standardized Palmer drought index (SPDI). Drought events and characteristics were extracted. A Gumbel–Hougaard (GH) copula was selected to construct the bivariate probability distribution of drought duration and severity, and the joint return periods (T a ) were calculated. Results showed that there were 50 (50 and 40) drought events in the past 55 years based on the SPI (SPEI and SPDI), and 9 (8 and 10) of them were severe with T a more than 10 years, occurred in the 1960s, the 1970s and the 2000s. Overall, the three drought indices could detect the onset of droughts and performed similarly with regard to drought identification. However, for the SPDI, moisture scarcity was less frequent, but it showed more severe droughts with substantially higher severity and longer duration droughts. The conditional return period (Ts|d) was calculated for the spring drought in 2011, and it was 66a and 54a, respectively, based on the SPI and SPDI, which was consistent with the record. Overall, the SPI, only considering the precipitation, can as effectively as the SPEI and SPDI identify the drought process over the PLB under the present changing climate. However, drought is affected by climate and land-cover changes; thus, it is necessary to integrate the results of drought frequency analysis based on different drought indices to improve the drought risk management.  相似文献   
6.
Zhu  Qian  Luo  Yulin  Zhou  Dongyang  Xu  Yue-Ping  Wang  Guoqing  Tian  Ye 《Natural Hazards》2021,105(2):2161-2185
Natural Hazards - Droughts have caused many damages in many countries and might be aggravated around the world. Therefore, it is urgent to predict and monitor drought accurately. Soil moisture and...  相似文献   
7.
The Integrated Biosphere Simulator is used to evaluate the spatial and temporal patterns of the crucial hydrological variables [run‐off and actual evapotranspiration (AET)] of the water balance across China for the period 1951–2006 including a precipitation analysis. Results suggest three major findings. First, simulated run‐off captured 85% of the spatial variability and 80% of the temporal variability for 85 hydrological gauges across China. The mean relative errors were within 20% for 66% of the studied stations and within 30% for 86% of the stations. The Nash–Sutcliffe coefficients indicated that the quantity pattern of run‐off was also captured acceptably except for some watersheds in southwestern and northwestern China. The possible reasons for underestimation of run‐off in the Tibetan plateau include underestimation of precipitation and uncertainties in other meteorological data due to complex topography, and simplified representations of the soil depth attribute and snow processes in the model. Second, simulated AET matched reasonably with estimated values calculated as the residual of precipitation and run‐off for watersheds controlled by the hydrological gauges. Finally, trend analysis based on the Mann–Kendall method indicated that significant increasing and decreasing patterns in precipitation appeared in the northwest part of China and the Yellow River region, respectively. Significant increasing and decreasing trends in AET were detected in the Southwest region and the Yangtze River region, respectively. In addition, the Southwest region, northern China (including the Heilongjiang, Liaohe, and Haihe Basins), and the Yellow River Basin showed significant decreasing trends in run‐off, and the Zhemin hydrological region showed a significant increasing trend. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
8.
Planting of sand‐binding vegetation in the Shapotou region on the southeastern edge of the Tengger Desert began in 1956. The revegetation programme successfully stabilized formerly mobile dunes in northern China, permitting the operation of the Baotou‐Lanzhou railway. Long‐term monitoring has shown that the revegetation programme produced various ecological changes, including the formation of biological soil crusts (BSCs). To gain insight into the role of BSCs in both past ecological change and current ecological evolution at the revegetation sites, we used field measurements and HYDRUS‐1D model simulations to investigate the effects of BSCs on soil hydrological processes at revegetated sites planted in 1956 and 1964 and at an unplanted mobile dune site. The results demonstrate that the formation of BSCs has altered patterns of soil water storage, increasing the moisture content near the surface (0–5 cm) while decreasing the moisture content in deeper layers (5–120 cm). Soil evaporation at BSC sites is elevated relative to unplanted sites during periods when canopy coverage is low. Rainfall infiltration was not affected by BSCs during the very dry period that was studied (30 April to 30 September 2005); during periods with higher rainfall intensity, differences in infiltration may be expected due to runoff at BSC sites. The simulated changes in soil moisture storage and hydrological processes are consistent with ongoing plant community succession at the revegetated sites, from deep‐rooted shrubs to more shallow‐rooted herbaceous species. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
9.
中国主要江河径流变化成因定量分析   总被引:13,自引:1,他引:13       下载免费PDF全文
变化环境下中国主要江河实测径流量发生了较为明显的变化,科学理清径流变化原因是流域水资源评价和管理的重要基础工作。基于中国七大江河代表性水文站1956—2018年的实测径流量资料,诊断了变化环境下水文序列的变异性特征;采用水文模拟途径,定量评估了不同驱动要素对径流变化的影响。结果表明:①淮河、长江和珠江实测径流量变异性特征不明显,相比而言,北方主要江河实测年径流量系列存在较为明显的突变性,但最显著的变异点发生时间存在差异,变异前后降水径流关系发生较大变化。② RCCC-WBM模型能够较好模拟中国南方湿润区和北方干旱区江河天然径流量过程,该模型可以用来还原人类活动影响期间的天然径流量。③总体来看,人类活动对中国北方江河径流量的影响大于气候变化的影响,气候变化是中国淮河及其以南江河径流变化的主要原因。  相似文献   
10.
以四川省广元市某区遥感影像为例,尝试了一种基于DEM和IHS变换的遥感影像反立体纠正方法。该方法首先对IHS变换得到的亮度分量I进行滤波处理,将反映地物反射率差异的亮度信息与地形因子信息分离,然后用DEM制作的地形阴影图替换原图像中的地形因子信息,最后进行IHS反变换。试验结果表明,该方法能有效纠正遥感图像上的反立体现象,并基本保持与原图像色彩一致。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号