首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1269篇
  免费   812篇
  国内免费   1237篇
测绘学   39篇
大气科学   2461篇
地球物理   225篇
地质学   230篇
海洋学   131篇
天文学   14篇
综合类   28篇
自然地理   190篇
  2024年   6篇
  2023年   46篇
  2022年   120篇
  2021年   130篇
  2020年   131篇
  2019年   118篇
  2018年   146篇
  2017年   167篇
  2016年   142篇
  2015年   195篇
  2014年   242篇
  2013年   217篇
  2012年   226篇
  2011年   189篇
  2010年   172篇
  2009年   196篇
  2008年   128篇
  2007年   157篇
  2006年   121篇
  2005年   105篇
  2004年   40篇
  2003年   53篇
  2002年   49篇
  2001年   39篇
  2000年   42篇
  1999年   44篇
  1998年   35篇
  1997年   36篇
  1996年   12篇
  1995年   9篇
  1993年   1篇
  1990年   1篇
  1986年   1篇
  1954年   2篇
排序方式: 共有3318条查询结果,搜索用时 859 毫秒
991.
In the period 1999–2009 ten-day SPOT-VEGETATION products of the Normalized Difference Vegetation Index (NDVI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) at 1 km spatial resolution were used in order to estimate and forecast the wheat yield over Europe. The products were used together with official wheat yield statistics to fine-tune a statistical model for each NUTS2 region, based on the Partial Least Squares Regression (PLSR) method. This method has been chosen to construct the model in the presence of many correlated predictor variables (10-day values of remote sensing indicators) and a limited number of wheat yield observations. The model was run in two different modalities: the “monitoring mode”, which allows for an overall yield assessment at the end of the growing season, and the “forecasting mode”, which provides early and timely yield estimates when the growing season is on-going. Performances of yield estimation at the regional and national level were evaluated using a cross-validation technique against yield statistics and the estimations were compared with those of a reference crop growth model. Models based on either NDVI or FAPAR normalized indicators achieved similar results with a minimal advantage of the model based on the FAPAR product. Best modelling results were obtained for the countries in Central Europe (Poland, North-Eastern Germany) and also Great Britain. By contrast, poor model performances characterize countries as follows: Sweden, Finland, Ireland, Portugal, Romania and Hungary. Country level yield estimates using the PLSR model in the monitoring mode, and those of a reference crop growth model that do not make use of remote sensing information showed comparable accuracies. The largest estimation errors were observed in Portugal, Spain and Finland for both approaches. This convergence may indicate poor reliability of the official yield statistics in these countries.  相似文献   
992.
Indian geostationary satellite Kalpana-1 (K1) offers a potential to capture the diurnal cycle of land surface temperature (LST) through thermal infrared channel (10.5–12.5 μm) observations of the Very High Resolution Radiometer (VHRR) sensor. A study was carried out to retrieve LST by adapting a generalized single-channel (SC) algorithm (Jiménez-Muñoz and Sobrino, 2003) for the VHRR sensor over India. The basis of SC algorithm depends on the concept of Atmospheric Functions (AFs) that are dependent on transmissivity, upwelling and downwelling radiances of the atmosphere. In the present study AFs were computed for the VHRR sensor through the MODTRAN simulations based upon varying atmospheric and surface inputs. The AFs were fitted with the atmospheric columnar water vapour content and a set of coefficients was derived for LST retrieval. The K1-LST derived with the SC algorithm was validated with (a) in situ measurements at two sites located in western parts of India and (b) the MODIS LST products. Comparison of K1-LST with the in situ measurements demonstrated that SC algorithm was successful in capturing the prominent diurnal variations of 283–332 K in the LST at desert and agriculture experimental sites with a rmse of 1.6 K and 2.7 K, respectively. Inter comparison of K1-LST and MODIS LST showed a reasonable agreement between these two retrievals up to LST of 300 K, however a cold bias up to 7.9 K was observed in MODIS LST for higher LST values (310–330 K) over the hot desert region.  相似文献   
993.
In Northeast China (NEC), snowfalls usually occur during winter and early spring, from mid-October to late March, and strong snowfalls rarely occur in middle spring. During 12?C13 April 2010, an exceptionally strong snowfall occurred in NEC, with 26.8?mm of accumulated water-equivalent snow over Harbin, the capital of the most eastern province in NEC. In this study, the major features of the snowfall and associated large-scale circulation and the predictability of the snowfall are analyzed using both observations and models. The Siberia High intensified and shifted southeastward from 10?days before the snowfall, resulting in intensifying the low-pressure system over NEC and strengthening the East Asian Trough during 12?C13 April. Therefore, large convergence of water vapor and strong rising motion appeared over eastern NEC, resulting in heavy snowfall. Hindcast experiments were carried out using the NCAR Weather Research and Forecasting (WRF) model in a two-way nesting approach, forced by NCEP Global Forecast System data sets. Many observed features including the large-scale and regional circulation anomalies and snowfall amount can be reproduced reasonably well, suggesting the feasibility of the WRF model in forecasting extreme weather events over NEC. A quantitative analysis also shows that the nested NEC domain simulation is even better than mother domain simulation in simulating the snowfall amount and spatial distribution, and that both simulations are more skillful than the NCEP Global Forecast System output. The forecast result from the nested forecast system is very promising for an operational purpose.  相似文献   
994.
We have compiled historical greenhouse gas emissions and their uncertainties on country and sector level and assessed their contribution to cumulative emissions and to global average temperature increase in the past and for a the future emission scenario. We find that uncertainty in historical contribution estimates differs between countries due to different shares of greenhouse gases and time development of emissions. Although historical emissions in the distant past are very uncertain, their influence on countries?? or sectors?? contributions to temperature increase is relatively small in most cases, because these results are dominated by recent (high) emissions. For relative contributions to cumulative emissions and temperature rise, the uncertainty introduced by unknown historical emissions is larger than the uncertainty introduced by the use of different climate models. The choice of different parameters in the calculation of relative contributions is most relevant for countries that are different from the world average in greenhouse gas mix and timing of emissions. The choice of the indicator (cumulative GWP weighted emissions or temperature increase) is very important for a few countries (altering contributions up to a factor of 2) and could be considered small for most countries (in the order of 10%). The choice of the year, from which to start accounting for emissions (e.g. 1750 or 1990), is important for many countries, up to a factor of 2.2 and on average of around 1.3. Including or excluding land-use change and forestry or non-CO2 gases changes relative contributions dramatically for a third of the countries (by a factor of 5 to a factor of 90). Industrialised countries started to increase CO2 emissions from energy use much earlier. Developing countries?? emissions from land-use change and forestry as well as of CH4 and N2O were substantial before their emissions from energy use.  相似文献   
995.
Climatic changes in the onset of spring in northern China associated with changes in the annual cycle and with a recent warming trend were quantified using a recently developed adaptive data analysis tool, the Ensemble Empirical Mode Decomposition. The study was based on a homogenized daily surface air temperature (SAT) dataset for the period 1955–2003. The annual cycle here is referred to as a refined modulated annual cycle (MAC). The results show that spring at Beijing has arrived significantly earlier by about 2.98 d (10 yr)-1, of which about 1.85 d (10 yr)-1 is due to changes in the annual cycle and 1.13 d (10 yr)-1 due to the long-term warming trend. Variations in the MAC component explain about 92.5% of the total variance in the Beijing daily SAT series and could cause as much as a 20-day shift in the onset of spring from one year to another. The onset of spring has been advancing all over northern China, but more significant in the east than in the west part of the region. These differences are somehow unexplainable by the zonal pattern of the warming trend over the whole region, but can be explained by opposite changes in the spring phase of the MAC, i.e. advancing in the east while delaying in the west. In the east of northern China, the change in the spring phase of MAC explains 40%–60% of the spring onset trend and is attributable to a weakening Asian winter monsoon. The average sea level pressure in Siberia (55°–80°N, 50°–110°E), an index of the strength of the winter monsoon, could serve as a potential short-term predictor for the onset of spring in the east of northern China.  相似文献   
996.
This paper examines the sensitivity of CAM3.1 simulations of East Asian summer monsoon (EASM) to the choice of dynamic cores using three long-term simulations, one with each of the following cores: the Eulerian spectral transform method (EUL), semi-Lagrangian scheme (SLD) and finite volume approach (FV). Our results indicate that the dynamic cores significantly influence the simulated fields not only through dynamics, such as wind, but also through physical processes, such as precipitation. Generally speaking, SLD is superior to EUL and FV in simulating the climatological features of EASM and its interannual variability. The SLD version of the CAM model partially reduces its known deficiency in simulating the climatological features of East Asian summer precipitation. The strength and position of simulated western Pacific subtropical high (WPSH) and its ridge line compare more favourably with observations in SLD and FV than in EUL. They contribute to the intensification of the south-easterly along the south of WPSH and the vertical motion through the troposphere around 30° N, where the subtropical rain belt exists. Additionally, SLD simulates the scope of the westerly jet core over East Asia more realistically than the other two dynamic cores do. Considerable systematic errors of the seasonal migration of monsoon rain belt and water vapour flux exist in all of the three versions of CAM3.1 model, although it captures the broad northward shift of convection, and the simulated results share similarities. The interannual variation of EASM is found to be more accurate in SLD simulation, which reasonably reproduces the leading combined patterns of precipitation and 850-hPa winds in East Asia, as well as the 2.5- and 10-year periods of Li?CZeng EASM index. These results emphasise the importance of dynamic cores for the EASM simulation as distinct from the simulation??s sensitivity to the physical parameterisations.  相似文献   
997.
Vegetation feedback under future global warming   总被引:2,自引:0,他引:2  
It has been well documented that vegetation plays an important role in the climate system. However, vegetation is typically kept constant when climate models are used to project anthropogenic climate change under a range of emission scenarios in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios. Here, an atmospheric general circulation model, and an asynchronously coupled system of an atmospheric and an equilibrium terrestrial biosphere model are forced by monthly sea surface temperature and sea ice extent for the periods 2051?C2060 and 2090?C2098 as projected with 17 atmosphere?Cocean general circulation models participating in the IPCC Fourth Assessment Report, and by appropriate atmospheric carbon dioxide concentrations under the A2 emission scenario. The effects of vegetation feedback under future global warming are then investigated. It is found that the simulated composition and distribution of vegetation during 2051?C2060 (2090?C2098) differ greatly from the present, and global vegetation tends to become denser as expressed by a 21% (36%) increase in global mean leaf area index, which is most pronounced at the middle and high northern latitudes. Vegetation feedback has little effect on globally averaged surface temperature. On a regional scale, however, it induces statistically significant changes in surface temperature, in particular over most parts of continental Eurasia east of about 60°E where annual surface temperature is expected to increase by 0.1?C1.0?K, with an average of about 0.4?K for each future period. These changes can mostly be explained by changes in surface albedo resulting from vegetation changes in the context of future global warming.  相似文献   
998.
The seasonal mean variability of the atmospheric circulation is affected by processes with time scales from less than seasonal to interannual or longer. Using monthly mean data from an ensemble of Atmospheric General Circulation Model (AGCM) realisations, the interannual variability of the seasonal mean is separated into intraseasonal, and slowly varying components. For the first time, using a recently developed method, the slowly varying component in multiple AGCM ensembles is further separated into internal and externally forced components. This is done for Southern Hemisphere 500?hPa geopotential height from five AGCMs in the CLIVAR International Climate of the Twentieth Century project for the summer and winter seasons. In both seasons, the intraseasonal and slow modes of variability are qualitatively well reproduced by the models when compared with reanalysis data, with a relative metric finding little overall difference between the models. The Southern Annular Mode (SAM) is by far the dominant mode of slowly varying internal atmospheric variability. Two slow-external modes of variability are related to El Ni?o-Southern Oscillation (ENSO) variability, and a third is the atmospheric response to trends in external forcing. An ENSO-SAM relationship is found in the model slow modes of variability, similar to that found by earlier studies using reanalysis data. There is a greater spread in the representation of model slow-external modes in winter than summer, particularly in the atmospheric response to external forcing trends. This may be attributable to weaker external forcing constraints on SH atmospheric circulation in winter.  相似文献   
999.
The Atlantic Meridional Overturning Circulation(AMOC)transports a large amount of heat to northern high latitudes,playing an important role in the global climate change.Investigation of the freshwater perturbation in North Atlantic(NA)has become one of the hot topics in the recent years.In this study,the mechanism and pathway of meridional ocean heat transport(OHT)under the enhanced freshwater input to the northern high latitudes in the Atlantic are investigated by an ocean-sea ice-atmosphere coupled model.The results show that the anomalous OHT in the freshwater experiment(FW)is dominated by the meridional circulation kinetic and ocean thermal processes.In the FW,OHT drops down during the period of weakened AMOC while the upper tropical ocean turns warmer due to the retained NA warm currents.Conversely,OHT recovers as the AMOC recovers,and the mechanism can be generalized as:1)increased ocean heat content in the tropical Southern Ocean during the early integration provides the thermal condition for the recovery of OHT in NA;2)the OHT from the Southern Ocean enters the NA through the equator alongthe deep Ekman layer;3)in NA,the recovery of OHT appears mainly along the isopycnic layers of 24.70-25.77 below the mixing layer.It is then transported into the mixing layer from the "outcropping points"innorthern high latitudes,and finally released to the atmosphere by the ocean-atmosphere heat exchange.  相似文献   
1000.
气溶胶光学厚度谱特征判断粒子大小方法初探   总被引:4,自引:0,他引:4       下载免费PDF全文
当气溶胶谱满足Junge分布时,Angstrom指数 (α) 可以准确地描述粒子大小,但真实大气气溶胶很少完全满足这一条件,仅用α判断粒子大小会有较大出入。基于北京、香河、兴隆、太湖4个Aeronet观测站21世纪以来各站历时都超过1年的气溶胶光学厚度资料,获得5511组lnτ与lnλ的二次拟合参数a2,a1,尝试找到一种结合α,a2,a1判断粒子大小的方法。结果表明:当气溶胶为粗粒子时 (Vfine/Vtotal<0.2),α均小于0.75,仅用α就可以较好地判断粒子大小,但当气溶胶以细粒子为主时 (Vfine/Vtotal>0.7),该方法会有较大出入,此时a2,a1可以有效地辅助α判断粒子大小,α>0.75,a2<-0.5或a2<-0.5,a1<-1.0是较好的判据。此外,分析发现国外研究提出的用a2-a1判断粒子大小的方法效果并不理想,尤其在1<a2-a1<2的情况下,粒子的组成有多种可能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号