首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   6篇
  国内免费   12篇
测绘学   1篇
大气科学   151篇
地球物理   13篇
地质学   5篇
海洋学   17篇
天文学   2篇
综合类   1篇
自然地理   2篇
  2024年   2篇
  2023年   1篇
  2022年   6篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   1篇
  2015年   5篇
  2014年   6篇
  2013年   10篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   9篇
  2008年   3篇
  2007年   8篇
  2006年   16篇
  2005年   15篇
  2004年   10篇
  2003年   11篇
  2002年   7篇
  2001年   12篇
  2000年   10篇
  1999年   9篇
  1998年   4篇
  1997年   8篇
  1996年   7篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1986年   1篇
排序方式: 共有192条查询结果,搜索用时 156 毫秒
1.
2.
3.
Strategies to mitigate anthropogenic climate change recognize that carbon sequestration in the terrestrial biosphere can reduce the build-up of carbon dioxide in the Earth’s atmosphere. However, climate mitigation policies do not generally incorporate the effects of these changes in the land surface on the surface albedo, the fluxes of sensible and latent heat to the atmosphere, and the distribution of energy within the climate system. Changes in these components of the surface energy budget can affect the local, regional, and global climate. Given the goal of mitigating climate change, it is important to consider all of the effects of changes in terrestrial vegetation and to work toward a better understanding of the full climate system. Acknowledging the importance of land surface change as a component of climate change makes it more challenging to create a system of credits and debits wherein emission or sequestration of carbon in the biosphere is equated with emission of carbon from fossil fuels. Recognition of the complexity of human-caused changes in climate does not, however, weaken the importance of actions that would seek to minimize our disturbance of the Earth’s environmental system and that would reduce societal and ecological vulnerability to environmental change and variability.  相似文献   
4.
Radiative Exchange in an Urban Street Canyon   总被引:1,自引:4,他引:1  
The influence of building geometry on the radiation terms ofthe surface energy balance is a principal reason for surfacetemperature differences between rural and urban areas.Methods exist to calculate the radiation balance in an urban area,but their validity across the range of urban geometries andmaterials has not been carefully considered.Here the exchange of diffuse radiation in an urban street canyon isinvestigated using a method incorporating all reflections of radiation.This exact solution is compared to two commonly used approximationsthat retain either no reflections, or just one reflection of radiation.The area-averaged net radiative flux density from the facets of the canyondecreases in magnitude monotonically as the canyon aspect ratio increases.The two approximate solutions possess unphysical differences from thismonotonic decrease for high canyon aspect ratios or low materialemissivities/high material albedos.The errors of the two approximate solutions are small for near blackbodymaterials and small canyon aspect ratios but can be an order ofmagnitude for intermediate material properties and deep street canyons.Urban street canyon models need to consider at least one reflectionof radiation and multiple reflections are desirable for full applicability.  相似文献   
5.
基于华南地区自动站逐小时观测资料, 采用传统站点评分、邻域法等评估华南区域高分辨率数值模式(包括GRAPES_GZ_R 1 km模式和GRAPES_GZ 3 km模式)对降水、地面温度和风场等要素的预报能力。结果表明: GRAPES_GZ_R 1 km模式的降水预报技巧优于GRAPES_GZ 3 km模式, 模式预报以正偏差为主。对于不同起报时间的预报, 00时(世界时, 下同)起报的预报效果优于12时。GRAPES_GZ_R 1 km模式的TS评分是GRAPES_GZ 3 km模式的两倍以上, 对不同降水阈值的评分均较高。分数技巧评分(FSS)显示GRAPES_GZ_R 1 km模式6 h累计降水预报在0.1 mm、1 mm及5 mm以上的降水均可达到最低预报技巧尺度, 对所检验降水对象的空间位置把握能力更好。2 m气温和10 m风速检验结果表明两个模式均能较好把握广东省温度的分布特征, GRAPES_GZ_R 1 km模式对2 m气温预报结果优于GRAPES_GZ 3 km模式, 预报绝对误差更小; 两个模式对风速的预报整体偏强, 预报偏差在1~4 m/s之间, 但相比之下GRAPES_GZ 3 km模式在风场预报上表现更好。GRAPES_GZ_R 1 km模式的2 m气温和10 m风速预报偏差随降水过程存在明显波动, 强降水过后温度预报整体偏低, 风速预报偏强, 在模式产品订正、使用等需要考虑模式对主要天气系统的预报情况。总的来说, GRAPES_GZ_R 1 km模式的预报产品具有较好的参考价值。   相似文献   
6.
Summary The purpose of this paper is to present a recently developed climatology of explosively developing south eastern Tasman Sea extra-tropical cyclones, or meteorological “bombs”, using a latitude dependent definition for meteorological bombs based on that of Simmonds and Keay (2000a, b), and Lim and Simmonds (2002). These highly transient systems, which have a damaging impact upon New Zealand, are frequently accompanied by destructive winds, flood rains, and coastal storm surges. Two cases are selected from the climatology and briefly described here. The first case study is the major flood and storm force wind event of June 20 to 21, 2002 that affected the Coromandel Peninsula region of the North Island of New Zealand. The second case was a “supercyclone” bomb that developed well to the southwest of New Zealand region during May 29 to 31, 2004, but which could easily have formed in the New Zealand region with catastrophic consequences. It was well-captured by the new high resolution Quikscat scatterometer instrument.This study extends the work of two of the authors (Buckley and Leslie, 2004; Buckley and Leslie, 2000; Qi and Leslie, 2000), on southern hemisphere meteorological bombs, to yet another geographical location. Here, we relied heavily on surface observations, scatterometer and other satellite-derived data, and weather radar imagery in developing the climatology.  相似文献   
7.
Four high resolution atmospheric general circulation models (GCMs) have been integrated with the standard forcings of the PRUDENCE experiment: IPCC-SRES A2 radiative forcing and Hadley Centre sea surface temperature and sea-ice extent. The response over Europe, calculated as the difference between the 2071–2100 and the 1961–1990 means is compared with the same diagnostic obtained with nine Regional Climate Models (RCM) all driven by the Hadley Centre atmospheric GCM. The seasonal mean response for 2m temperature and precipitation is investigated. For temperature, GCMs and RCMs behave similarly, except that GCMs exhibit a larger spread. However, during summer, the spread of the RCMs—in particular in terms of precipitation—is larger than that of the GCMs. This indicates that the European summer climate is strongly controlled by parameterized physics and/or high-resolution processes. The temperature response is larger than the systematic error. The situation is different for precipitation. The model bias is twice as large as the climate response. The confidence in PRUDENCE results comes from the fact that the models have a similar response to the IPCC-SRES A2 forcing, whereas their systematic errors are more spread. In addition, GCM precipitation response is slightly but significantly different from that of the RCMs.  相似文献   
8.
A scenario of European climate change for the late twenty-first century is described, using a high-resolution state-of-the-art model. A time-slice approach is used, whereby the atmospheric general circulation model, HadAM3P, was integrated for two periods, 1960–1990 and 2070–2100, using the SRES A2 scenario. For the first time an ensemble of such experiments was produced, along with appropriate statistical tests for assessing significance. The focus is on changes to the statistics of seasonal means, and includes analysis of both multi-year means and interannual variance. All four seasons are assessed, and anomalies are mapped for surface air temperature, precipitation and snow mass. Mechanisms are proposed where these are dominated by straightforward local processes. In winter, the largest warming occurs over eastern Europe, up to 7°C, mean snow mass is reduced by at least 80% except over Scandinavia, and precipitation increases over all but the southernmost parts of Europe. In summer, temperatures rise by 6–9°C south of about 50°N, and mean rainfall is substantially reduced over the same area. In spring and autumn, anomalies tend to be weaker, but often display patterns similar to the preceding season, reflecting the inertia of the land surface component of the climate system. Changes in interannual variance are substantial in the solsticial seasons for many regions (note that for precipitation, variance estimates are scaled by the square of the mean). In winter, interannual variability of near-surface air temperature is considerably reduced over much of Europe, and the relative variability of precipitation is reduced north of about 50°N. In summer, the (relative) interannual variance of both variables increases over much of the continent.  相似文献   
9.
Most of the discrepancies in the climate sensitivity of general circulation models (GCMs) are believed to be due to differences in cloud radiative feedback. Analysis of cloud response to climate change in different ‘regimes’ may offer a more detailed understanding of how the cloud response differs between GCMs. In which case, evaluation of simulated cloud regimes against observations in terms of both their cloud properties and frequency of occurrence will assist in assessing confidence in the cloud response to climate change in a particular GCM. In this study, we use a clustering technique on International Satellite Cloud Climatology Project (ISCCP) data and on ISCCP-like diagnostics from two versions of the Hadley Centre GCM to identify cloud regimes over four different geographical regions. The two versions of the model are evaluated against observational data and their cloud response to climate change compared within the cloud regime framework. It is found that cloud clusters produced by the more recent GCM, HadSM4, compare more favourably with observations than HadSM3. In response to climate change, although the net cloud response over particular regions is often different in the two models, in several instances the same basic processes may be seen to be operating. Overall, both changes in the frequency of occurrence of cloud regimes and changes in the properties (optical depth and cloud top height) of the cloud regimes contribute to the cloud response to climate change.  相似文献   
10.
The global three-dimensional Lagrangian chemistry-transport model STOCHEM has been used to follow the changes in the tropospheric distributions of the two major radiatively-active trace gases, methane and tropospheric ozone, following the emission of pulses of the short-lived tropospheric ozone precursor species, methane, carbon monoxide, NOx and hydrogen. The radiative impacts of NOx emissionswere dependent on the location chosen for the emission pulse, whether at the surface or in the upper troposphere or whether in the northern or southern hemispheres. Global warming potentials were derived for each of the short-lived tropospheric ozone precursor species by integrating the methane and tropospheric ozone responses over a 100 year time horizon. Indirect radiative forcing due to methane and tropospheric ozone changes appear to be significant for all of the tropospheric ozone precursor species studied. Whereas the radiative forcing from methane changes is likely to be dominated by methane emissions, that from tropospheric ozone changes is controlled by all the tropospheric ozone precursor gases, particularly NOxemissions. The indirect radiative forcing impacts of tropospheric ozone changes may be large enough such that ozone precursors should be considered in the basket of trace gases through which policy-makers aim to combat global climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号