首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
大气科学   9篇
地球物理   1篇
海洋学   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2007年   1篇
  2004年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
11.
《Atmospheric Research》2010,95(4):694-703
The German Weather Service (DWD) has two non-hydrostatic operational weather prediction models with different spatial resolution and precipitation parametrisations. The coarser COSMO-EU model has a spatial resolution of 7 km, whereas the higher-resolution COSMO-DE model has a gridspace of 2.8 km and explicitly resolves deep convection. To improve the numerical weather prediction (NWP) models it is necessary to understand precipitation processes. A central goal is the statistical evaluation of precipitation forecasts with dynamic parameters. Here, the Dynamic State Index (DSI) is used as a dynamic threshold parameter. The DSI theoretically describes the change of atmospheric flow fields as deviations from a stationary adiabatic solution of the primitive equations (Névir, 2004). For seasonal area means the DSI shows a remarkably high correlation with the precipitation forecasts provided by the COSMO-DE model. This is especially the case for the summer of 2007. The same analysis has been performed with the COSMO-EU forecast data and the results were compared with those from the COSMO-DE model. Moreover, an independent precipitation analysis, with a resolution corresponding to 7 km and 2.8 km, has been compared with respect to modelled precipitation and the DSI. In addition, correlations between the DSI and modelled as well as observed precipitation as a function of the forecast time for the different grid resolutions are also presented. The results show, that after 12 h, the correlation of the persistence forecast with the DSI reaches two thirds of the initial value. Thus, the DSI offers itself as a new dynamic forecast tool for precipitation events.  相似文献   
12.
A single-wavelength Rayleigh lidar system has been used to measure the temperatures in the upper troposphere and lower stratosphere in the night in the altitude range from about 8 to 30km. The temperature derivation is based on an inversion algorithm of the pure Rayleigh backscatter. Calculations include the derivation of the air molecular concentration by an iterative method and the backscattered signals corrected by the background aerosol, which is now found to be low and stable. The uncertainties in estimating the temperature using this method are discussed in detail.The temperature profiles and the tropopause characteristics derived by using the lidar measurements are compared with the radiosonde data. Good agreement is found between these two measurements revealing the potential of this method. The comparison with radiosonde data shows that the lidar measured tropopause temperature is lower by 0.8±1.5K and the tropopause height is higher by 0.45±0.8km than the radiosonde measurements. The climatology of local tropopause (24.57°N,121.13°E) is briefly discussed in terms of a double tropopause formation and seasonal variations of the tropopause height and temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号