首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   9篇
  国内免费   11篇
测绘学   17篇
大气科学   98篇
地球物理   14篇
地质学   18篇
海洋学   13篇
天文学   14篇
综合类   2篇
自然地理   7篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   8篇
  2019年   2篇
  2017年   5篇
  2016年   6篇
  2015年   21篇
  2014年   30篇
  2013年   33篇
  2012年   8篇
  2011年   16篇
  2010年   8篇
  2009年   9篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1983年   2篇
  1976年   2篇
排序方式: 共有183条查询结果,搜索用时 114 毫秒
51.
The representative concentration pathways: an overview   总被引:20,自引:4,他引:16  
This paper summarizes the development process and main characteristics of the Representative Concentration Pathways (RCPs), a set of four new pathways developed for the climate modeling community as a basis for long-term and near-term modeling experiments. The four RCPs together span the range of year 2100 radiative forcing values found in the open literature, i.e. from 2.6 to 8.5 W/m2. The RCPs are the product of an innovative collaboration between integrated assessment modelers, climate modelers, terrestrial ecosystem modelers and emission inventory experts. The resulting product forms a comprehensive data set with high spatial and sectoral resolutions for the period extending to 2100. Land use and emissions of air pollutants and greenhouse gases are reported mostly at a 0.5?×?0.5 degree spatial resolution, with air pollutants also provided per sector (for well-mixed gases, a coarser resolution is used). The underlying integrated assessment model outputs for land use, atmospheric emissions and concentration data were harmonized across models and scenarios to ensure consistency with historical observations while preserving individual scenario trends. For most variables, the RCPs cover a wide range of the existing literature. The RCPs are supplemented with extensions (Extended Concentration Pathways, ECPs), which allow climate modeling experiments through the year 2300. The RCPs are an important development in climate research and provide a potential foundation for further research and assessment, including emissions mitigation and impact analysis.  相似文献   
52.
The RCP greenhouse gas concentrations and their extensions from 1765 to 2300   总被引:16,自引:2,他引:14  
We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new scenarios for climate change research. We combine a suite of atmospheric concentration observations and emissions estimates for greenhouse gases (GHGs) through the historical period (1750?C2005) with harmonized emissions projected by four different Integrated Assessment Models for 2005?C2100. As concentrations are somewhat dependent on the future climate itself (due to climate feedbacks in the carbon and other gas cycles), we emulate median response characteristics of models assessed in the IPCC Fourth Assessment Report using the reduced-complexity carbon cycle climate model MAGICC6. Projected ??best-estimate?? global-mean surface temperature increases (using inter alia a climate sensitivity of 3°C) range from 1.5°C by 2100 for the lowest of the four RCPs, called both RCP3-PD and RCP2.6, to 4.5°C for the highest one, RCP8.5, relative to pre-industrial levels. Beyond 2100, we present the ECPs that are simple extensions of the RCPs, based on the assumption of either smoothly stabilizing concentrations or constant emissions: For example, the lower RCP2.6 pathway represents a strong mitigation scenario and is extended by assuming constant emissions after 2100 (including net negative CO2 emissions), leading to CO2 concentrations returning to 360 ppm by 2300. We also present the GHG concentrations for one supplementary extension, which illustrates the stringent emissions implications of attempting to go back to ECP4.5 concentration levels by 2250 after emissions during the 21st century followed the higher RCP6 scenario. Corresponding radiative forcing values are presented for the RCP and ECPs.  相似文献   
53.
A special issue on the RCPs   总被引:2,自引:1,他引:1  
  相似文献   
54.
To investigate the genetic variation and population structure of Pacific herring in the Yellow Sea and the genetic differentiation between the Yellow Sea and the Sea of Japan,fragments of 479-bp mitochondrial DNA control region were sequenced for 110 individuals collected from three different periods in the Yellow Sea and one locality in the Sea of Japan.High haplotype diversity and moderate nucleotide diversity were observed in Pacific herring.AMOVA and exact test of population differentiation showed no significant genetic differentiations among the three populations of the Yellow Sea and suggested the populations can be treated as a single panmictic stock in the Yellow Sea.However,a large and significant genetic differentiation(WST50.11;P50.00) was detected between the populations in the Yellow Sea and the Sea of Japan.The high sea water temperature in the Tsushima Strait was thought a barrier to block the gene exchange between populations of the two sea areas.The neutrality tests and mismatch distribution indicated recent population expansion in Pacific herring.  相似文献   
55.
Transportation contributes to a significant and rising share of global energy use and GHG emissions. Therefore modeling future travel demand, its fuel use, and resulting CO2 emission is highly relevant for climate change mitigation. In this study we compare the baseline projections for global service demand (passenger-kilometers, ton-kilometers), fuel use, and CO2 emissions of five different global transport models using harmonized input assumptions on income and population. For four models we also evaluate the impact of a carbon tax. All models project a steep increase in service demand over the century. Technology change is important for limiting energy consumption and CO2 emissions, the study also shows that in order to stabilise or even decrease emissions radical changes would be required. While all models project liquid fossil fuels dominating up to 2050, they differ regarding the use of alternative fuels (natural gas, hydrogen, biofuels, and electricity), because of different fuel price projections. The carbon tax of 200 USD/tCO2 in 2050 stabilizes or reverses global emission growth in all models. Besides common findings many differences in the model assumptions and projections indicate room for further understanding long-term trends and uncertainty in future transport systems.  相似文献   
56.
We examine the potential role of “solar radiation management” or “sunlight reduction methods” (SRM) in limiting future climate change, focusing on the interplay between SRM deployment and mitigation in the context of uncertainty in climate response. We use a straightforward scenario analysis to show that the policy and physical context determine the potential need, amount, and timing of SRM. SRM techniques, along with a substantial emission reduction policy, would be needed to meet stated policy goals, such as limiting climate change to 2 °C above pre-industrial levels, if the climate sensitivity is high. The SRM levels examined by current modeling studies are much higher than the levels required under an assumption of a consistent long-term policy. We introduce a degree-year metric, which quantifies the magnitude of SRM that would be needed to keep global temperatures under a given threshold.  相似文献   
57.
This study examines the dependence of the tropical cyclone (TC) intensity errors on the track errors in the Weather Research and Forecasting (WRF-ARW) model. By using the National Centers for Environmental Prediction global final analysis as the initial and boundary conditions for cloud-resolving simulations of TC cases that have small track errors, it is found that the 2- and 3-day intensity errors in the North Atlantic basin can be reduced to 15 and 19 % when the track errors decrease to 55 and 76 %, respectively, whereas the 1-day intensity error shows no significant reduction despite more than 30 % decrease of the 1-day track error. For the North-Western Pacific basin, the percentage of intensity reduction is somewhat similar with the 2- and 3-day intensity errors improved by about 15 and 19 %, respectively. This suggests that future improvement of the TC track forecast skill in the WRF-ARW model will be beneficial to the intensity forecast. However, the substantially smaller percentages of intensity improvement than those of the track error improvement indicate that ambient environment tends to play a less important role in determining the TC intensity as compared to other factors related to the vortex initialization or physics representations in the WRF-ARW model.  相似文献   
58.
In this paper, we study a persistent heavy precipitation process caused by a special retracing plateau vortex in the eastern Tibetan Plateau during 21–26 July 2010 using tropical rainfall measuring mission (TRMM) data. Results show that during the whole heavy rainfall process, the precipitation rate of convective cloud is steady for all four phases of the plateau vortex movement. Compared with the convective precipitation clouds, the stratiform precipitation clouds have a higher fraction of area, a comparable ratio of contribution to the total precipitation, and a much lower precipitation rate. Precipitation increases substantially after the vortex moves out of the Tibetan Plateau, and Sichuan Province has the most extensive precipitation, which occurs when the vortex turns back westward. A number of strong convective precipitation cloud centers appear at 3–5 km. With strong upward motion, the highest rain top can reach up to 15 km. In various phases of the vortex evolution, there is always more precipitable ice than precipitable water, cloud ice water and cloud liquid water. The precipitating cloud particles increase significantly in the middle and lower troposphere when the vortex moves eastward, and cloud ice particles increase quickly at 6–8 km when the vortex retraces westward. The center of the latent heat release is always prior to the center of the vortex, and the vortex moves along the latent heat release areas. Moreover, high latent heat is released at 5–8 km with maximum at 7 km. Also, the latent heat release is more significant when the vortex moves out of the Tibetan Plateau than over the Tibetan Plateau.  相似文献   
59.
The predictable patterns and predictive skills of monsoon precipitation in the Northern Hemisphere summer (June–July–August) are examined using reforecasts (1983–2010) from the National Center for Environmental Prediction Climate Forecast System version 2 (CFSv2). The possible connections of these predictable patterns with global sea surface temperature (SST) are investigated. The empirical orthogonal function analysis with maximized signal-to-noise ratio is used to isolate the predictable patterns of the precipitation for three regional monsoons: the Asian and Indo-Pacific monsoon (AIPM), the Africa monsoon (AFM), and the North America monsoon (NAM). Overall, the CFSv2 well predicts the monsoon precipitation patterns associated with El Niño-South Oscillation (ENSO) due to its good prediction skill for ENSO. For AIPM, two identified predictable patterns are an equatorial dipole pattern characterized by opposite variations between the equatorial western Pacific and eastern Indian Ocean, and a tropical western Pacific pattern characterized by opposite variations over the tropical northwestern Pacific and the Philippines and over the regions to its west, north, and southeast. For NAM, the predictable patterns are a tropical eastern Pacific pattern with opposite variations in the tropical eastern Pacific and in Mexico, the Guyana Plateau and the equatorial Atlantic, and a Central American pattern with opposite variations in the eastern Pacific and the North Atlantic and in the Amazon Plains. The CFSv2 can predict these patterns at least 5 months in advance. However, compared with the good skill in predicting AIPM and NAM precipitation patterns, the CFSv2 exhibits little predictive skill for AFM precipitation, probably because the variability of the tropical Atlantic SST plays a more important than ENSO in the AFM precipitation variation and the prediction skill is lower for the tropical Atlantic SST than the tropical Pacific SST.  相似文献   
60.
Lagged ensembles from the operational Climate Forecast System version 2 (CFSv2) seasonal hindcast dataset are used to assess skill in forecasting interannual variability of the December–February Arctic Oscillation (AO). We find that a small but statistically significant portion of the interannual variance (>20 %) of the wintertime AO can be predicted at leads up to 2 months using lagged ensemble averages. As far as we are aware, this is the first study to demonstrate that an operational model has discernible skill in predicting AO variability on seasonal timescales. We find that the CFS forecast skill is slightly higher when a weighted ensemble is used that rewards forecast runs with the most accurate representations of October Eurasian snow cover extent (SCE), hinting that a stratospheric pathway linking October Eurasian SCE with the AO may be responsible for the model skill. However, further analysis reveals that the CFS is unable to capture many important aspects of this stratospheric mechanism. Model deficiencies identified include: (1) the CFS significantly underestimates the observed variance in October Eurasian SCE, (2) the CFS fails to translate surface pressure anomalies associated with SCE anomalies into vertically propagating waves, and (3) stratospheric AO patterns in the CFS fail to propagate downward through the tropopause to the surface. Thus, alternate boundary forcings are likely contributing to model skill. Improving model deficiencies identified in this study may lead to even more skillful predictions of wintertime AO variability in future versions of the CFS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号