首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   33篇
  国内免费   35篇
测绘学   2篇
大气科学   129篇
地球物理   19篇
地质学   5篇
海洋学   2篇
天文学   2篇
综合类   1篇
自然地理   3篇
  2024年   4篇
  2023年   15篇
  2022年   22篇
  2021年   27篇
  2020年   19篇
  2019年   9篇
  2018年   8篇
  2017年   21篇
  2016年   3篇
  2015年   5篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2010年   5篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有163条查询结果,搜索用时 31 毫秒
31.
We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. The parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.  相似文献   
32.
Winter precipitation over Central Asia and the western Tibetan Plateau (CAWTP) is mainly a result of the interaction between the westerly circulation and the high mountains around the plateau. Empirical Orthogonal Functions (EOFs), Singular Value Decomposition (SVD), linear regression and composite analysis were used to analyze winter daily precipitation and other meteorological elements in this region from 1979 to 2013, in order to understand how interactions between the regional circulation and topography affect the intraseasonal variability in precipitation. The SVD analysis shows that the winter daily precipitation variability distribution is characterized by a dipole pattern with opposite signs over the northern Pamir Plateau and over the Karakoram Himalaya, similar to the second mode of EOF analysis. This dipole pattern of precipitation anomaly is associated with local anomalies in both the 700 hPa moisture transport and the 500 hPa geopotential height and is probably caused by oscillations in the regional and large-scale circulations, which can influence the westerly disturbance tracks and water vapor transport. The linear regression shows that the anomalous mid-tropospheric circulation over CAWTP corresponds to an anti-phase variation of the 500 hPa geopotential height anomalies over the southern and northern North Atlantic 10 days earlier (at 95% significance level), that bears a similarity to the North Atlantic Oscillation (NAO). The composite analysis reveals that the NAO impacts the downstream regions including CAWTP by controlling south-north two branches of the middle latitude westerly circulation around the Eurasian border. During the positive phases of the NAO, the northern branch of the westerly circulation goes around the northwest Tibetan Plateau, whereas the southern branch encounters the southwest Tibetan Plateau, which leads to reduced precipitation over the northern Pamir Plateau and increased precipitation over the Karakoram Himalaya, and vice versa.  相似文献   
33.
The onset and advance of southwest monsoon are accompanied by the appearance of the offshore trough along the southwest coast of India. This offshore trough escorts a deluge of rainfall to the southwest coast, and sometimes rainfall band moves eastward further into south India. These broad observations were noticed during the summer monsoon of June 2017. Meteorological agencies and media had reported a huge amount of rainfall over the southwest coast of India during the month. But, in the far interior of south India, rainfall was less. Due to the less rainfall, water resources depleted, which affected local farmers and common man of south India. The confused views of the common man on southwest coast rainfall could be due to lack of understanding related to various factors affecting rainfall over the same region. This article is an endeavor to address the preliminary understanding of the southwest coast rainfall during June 2017, with more stress on offshore troughs. The study begins with area-averaged rainfall statistics over south, southwest, and southeast India by employing satellite and rain gauge merged rainfall datasets. Area averaged analysis revealed offshore trough contributed 80 % of rainfall over the South West India, 68 % over South East India, contributing to an overall 75 % over south India in 2017. To identify offshore trough position and strength in the reanalysis and model simulations, a new method called VSV (Vertical Shear of Vorticity) method was introduced. The computed offshore troughs were categorized into Active, Normal, and Feeble based on the strength of meridional gradient of mean sea level pressure and 850 hPa horizontal winds. The contribution due to each category of the offshore trough over different sub-regions was investigated to find out the effect of the offshore trough to total rainfall. Dynamic and thermodynamic features of these categories of the offshore trough were investigated by using proxies like equivalent potential temperature and moisture flux convergence. We found that during active offshore trough an eastward propagation of rain bands persists, which was explained by using moisture flux convergence and equivalent potential temperature at different levels of the atmosphere.  相似文献   
34.
The atmospheric low frequency variability at a regional or global scale is represented by teleconnection. Using monthly dataset of the Climatic Research Unit (CRU) for the period 1971–2016, the impacts of four large-scale teleconnection patterns on the climate variability over Southwest Asia are investigated. The large-scale features include the El Niño-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and the East Atlantic (EA) teleconnection patterns, as well as western tropical Indian Ocean (WTIO) sea surface temperature anomaly index. Results indicate that ENSO and EA are the first leading modes that explain variation of Southwest Asian precipitation, with positive (negative) anomalies during El Niño (La Niña) and the negative (positive) phase of EA. Variation of Southwest Asian near-surface temperature is most strongly related to WTIO index, with above-average (below-average) temperature during the positive (negative) phase of WTIO index, although the negative (positive) phase of NAO also favours the above-average (below-average) temperature. On the other hand, temperature (precipitation) over Southwest Asia shows the least response to ENSO (WTIO). ENSO and EA individually explain 13 percent annual variance of precipitation, while WTIO index explains 36 percent annual variance of near-surface temperature over Southwest Asia. Analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis Interim (ERA-Interim) data indicated establishments of negative (positive) geopotential height anomalies in the middle troposphere over Southwest Asia during El Niño (La Niña) or the negative (positive) phase of NAO, EA and WTIO. The response of precipitation variability over Southwest Asia to NAO is opposite to that expected from the geopotential height anomalies, but the correlation between precipitation and NAO is not statistically significant. Due to predictability of large-scale teleconnections, results of this study are encouraging for improvement of the state-of-the-art seasonal prediction of the climate over Southwest Asia.  相似文献   
35.
The different patterns of SST changes under the +8.5 W m-2 Representative Concentration Pathway(RCP8.5) projected by the latest two versions of the Flexible Global Ocean-Atmosphere-Land System model(FGOALS-g2 and FGOALS-s2; grid-point version 2 and spectral version 2, respectively), and the potential mechanisms for their formation are studied in this paper. The results show that, although both FGOALS-g2 and FGOALS-s2 project global warming patterns, FGOALS-g2(FGOALS-s2) projects a La Nia-like(an El Nio-like) mean warming pattern with weakest(strongest) warming over the central(eastern) equatorial Pacific for 2081–2100 relative to 1986–2005 under RCP8.5. A mixed layer heat budget analysis shows that the projected tropical Pacific Ocean warming in both models is primarily caused by atmospheric forcing. The main differences in the heating terms contributing to the SST changes between the two models are seen in the downward longwave radiation and ocean forcing. The minimum SST warming over the equatorial Pacific in FGOALS-g2 is attributed to the local minimum heating of downward longwave radiation and maximum cooling of ocean forcing. In contrast, the maximum SST warming over the equatorial Pacific in FGOALS-s2 is due to the maximum warming of downward longwave radiation, and the contribution of ocean forcing is minor. The minimum SST warming over the equatorial Pacific in FGOALS-g2 emerges around the 2050 s, before when the SST over the equatorial Pacific is warmer than that over the extra-equatorial Pacific. In FGOALS-s2, the SST difference shows a continuous increasing trend for 2006– 2100. Further examination of the oceanic and atmospheric circulation changes is needed to reveal the process responsible for the longwave radiation and ocean forcing difference between the two models.  相似文献   
36.
In this study, sensitivity experiments were conducted with the Zebiak-Cane ocean-atmosphere coupled model forced by the wind stress anomaly from the U.S. National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data to study the impacts of eastern Pacific warm pool on the formation and development of ENSO events. The effects of climatological mean sea surface temperature of the warm pool on forecast skill during the ENSO events of 1982–1999 are more considerable that those of climatological mean meridional winds and ocean currents. The forecast skill for the 1997/1998 El Ni?o event is characterized by sensitivity to climatological mean sea surface temperature and anomalies of northerly winds and currents. The forecast skill is found insensitive to climatological mean northerly meridional winds and currents.  相似文献   
37.
Dissolved aromatic compounds in Hungarian thermal waters were first reported more than 10 years ago. Among the identified compounds were alkylbenzene, polyaromatic hydrocarbon and heteroaromatic homologue series. The appearance of dissolved organic compounds has been bound to a threshold temperature of ∼80 °C, and their distribution is controlled by the water temperature. Relative demethylation and aromatisation were observed with increasing temperature. The origin of these compounds is not proved. Among precursor candidates are humic substances.Simulation experiments were carried out on humic and fulvic acid and on their mixture to gain information on aromatic compounds formed. The samples were heated and products were measured with GC-MS.In the presence of oxygen, increasing concentration of benzene can be observed as a function of temperature. Toluene and thiophene can be identified, other alkylbenzenes are missing. Under reductive conditions the concentration of benzene, toluene and the ratio of short to long chained aromatics generally increases in every sample as a function of temperature. Main compounds are toluene and benzene. The amount of heteroaromatic compounds increases with temperature, but their relative concentration compared to aromatic hydrocarbons decreases. At higher temperatures the proportion of pyrroles drops and S and O containing ones become dominant.The different processes (formation, aromatisation, polycondensation, relative demethylation, decomposition) occur in parallel but their relative intensities vary as a function of temperature. The effects of duration and increasing temperature are similar but not equal: both demethylation and aromatisation can be observed.  相似文献   
38.
赵向军  丁治英  李莹  高松 《气象科学》2020,40(2):209-219
在流体的不可压缩条件下,本文通过连续方程给出了一种新的垂直速度计算方法,称为z方法。通过实验得出:z方法下同样可以得出水平涡度与垂直运动的关系,即水平涡度矢量逆时针旋转时,对应上升运动,顺时针旋转时对应下沉运动。通过有效性验证得出:本文的方法在高层具有比较高的可靠性,在低层可靠性比高层稍弱,在中层则不甚理想。通过与p方法求解出的垂直速度的效果进行比较,得出p方法略好于z方法。  相似文献   
39.
《Journal of Hydrology》2006,316(1-4):129-140
Genetic Algorithm (GA) is globally oriented in searching and thus useful in optimizing multiobjective problems, especially where the objective functions are ill-defined. Conceptual rainfall–runoff models that aim at predicting streamflow from the knowledge of precipitation over a catchment have become a basic tool for flood forecasting. The parameter calibration of a conceptual model usually involves the multiple criteria for judging the performances of observed data. However, it is often difficult to derive all objective functions for the parameter calibration problem of a conceptual model. Thus, a new method to the multiple criteria parameter calibration problem, which combines GA with TOPSIS (technique for order performance by similarity to ideal solution) for Xinanjiang model, is presented. This study is an immediate further development of authors' previous research (Cheng, C.T., Ou, C.P., Chau, K.W., 2002. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall–runoff model calibration. Journal of Hydrology, 268, 72–86), whose obvious disadvantages are to split the whole procedure into two parts and to become difficult to integrally grasp the best behaviors of model during the calibration procedure. The current method integrates the two parts of Xinanjiang rainfall–runoff model calibration together, simplifying the procedures of model calibration and validation and easily demonstrated the intrinsic phenomenon of observed data in integrity. Comparison of results with two-step procedure shows that the current methodology gives similar results to the previous method, is also feasible and robust, but simpler and easier to apply in practice.  相似文献   
40.
We develop a new algorithm, the simplified urban-extent (SUE) algorithm, to estimate the surface urban heat island (UHI) intensity at a global scale. We implement the SUE algorithm on the Google Earth Engine platform using Moderate Resolution Imaging Spectroradiometer (MODIS) images to calculate the UHI intensity for over 9500 urban clusters using over 15 years of data, making this one of the most comprehensive characterizations of the surface UHI to date. The results from this algorithm are validated against previous multi-city studies to demonstrate the suitability of the method. The dataset created is then filtered for elevation differentials and percentage of urban area and used to estimate the diurnal, monthly, and long-term variability in the surface UHI in different climate zones. The global mean surface UHI intensity is 0.85 °C during daytime and 0.55 °C at night. Cities in arid climate show distinct diurnal and seasonal patterns, with higher surface UHI during nighttime (compared to daytime) and two peaks throughout the year. The diurnal variability in surface UHI is highest for equatorial climate zone (0.88 °C) and lowest for arid zone (0.53 °C). The seasonality is highest in the snow climate zone and lowest for equatorial climate zone. While investigating the change in the surface UHI over a decade and a half, we find a consistent increase in the daytime surface UHI in the urban clusters of the warm temperate climate zone (0.04 °C/decade) and snow climate zone (0.05 °C/decade). Only arid climate zones show a statistically significant increase in the nighttime surface UHI intensity (0.03 °C/decade). Globally, the change is mainly seen during the daytime (0.03 °C/decade). Finally, the importance of vegetation differential between urban and rural areas on the spatiotemporal variability is examined. Vegetation has a strong control on the seasonal variability of the surface UHI and may also partly control the long-term variability. The complete UHI data are available through this website (https://yceo.yale.edu/research/global-surface-uhi-explorer) and allows the user to query the UHI of urban clusters using a simple interface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号