首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6124篇
  免费   1485篇
  国内免费   2058篇
测绘学   540篇
大气科学   638篇
地球物理   920篇
地质学   6628篇
海洋学   386篇
天文学   62篇
综合类   248篇
自然地理   245篇
  2024年   23篇
  2023年   105篇
  2022年   282篇
  2021年   294篇
  2020年   323篇
  2019年   444篇
  2018年   247篇
  2017年   399篇
  2016年   362篇
  2015年   404篇
  2014年   547篇
  2013年   755篇
  2012年   695篇
  2011年   693篇
  2010年   499篇
  2009年   698篇
  2008年   413篇
  2007年   599篇
  2006年   569篇
  2005年   267篇
  2004年   194篇
  2003年   166篇
  2002年   138篇
  2001年   87篇
  2000年   95篇
  1999年   103篇
  1998年   75篇
  1997年   36篇
  1996年   20篇
  1995年   17篇
  1994年   18篇
  1993年   36篇
  1992年   19篇
  1991年   15篇
  1990年   7篇
  1988年   9篇
  1986年   4篇
  1985年   4篇
  1979年   1篇
  1958年   1篇
  1957年   3篇
  1954年   1篇
排序方式: 共有9667条查询结果,搜索用时 31 毫秒
131.
地下水入渗补给量是重要的水文地质参数。本文介绍了测定地下水入渗补给量的最新方法——惰性气体法的原理与方法,该方法适用于封闭条件下的深层地下水。  相似文献   
132.
桂林地区岩溶水87Sr/86Sr特征   总被引:2,自引:0,他引:2  
王涛  王增银 《地球学报》2005,26(Z1):299-302
锶是岩石圈上部含量最大的微量元素,其元素及其同位素化学性质都比较稳定。不同水岩作用条件下,锶元素含量及其同位素值都不一样。本文通过对桂林地区的两个典型岩溶地下河系统不同类型地下水样87Sr/86Sr值和Sr含量的分析,得出;流经不同岩层的地下水其87Sr/86Sr值和Sr含量不同,同一地下河系统中不同类型地下水的87Sr/86Sr值Sr含量不同,其值的差异由岩性和水岩作用决定。说明87Sr/86Sr值能反映地下水的形成、径流和混合作用,是较理想的示踪剂,在岩溶水研究中具有很广阔的应用前景。  相似文献   
133.
湖泊湿地生态地球化学评价的研究重点为湖泊湿地生态系统中的重金属、植物营养元素及一些有机污染物,评价标准体系相应地包括水质基准、营养物基准、水体沉积物质量基准、饮用水卫生标准、土壤环境质量标准、食品卫生标准、湖泊水库富营养化标准等。  相似文献   
134.
Despite considerable work on other trace elements, the incorporation of dissolved silicon from cave waters into speleothems has not been previously investigated. In this study, the controls on dissolved Si in cave waters and on adsorbed Si in resulting speleothems are therefore investigated. Bedrock (dolomite), soil water, dripping water, and cave carbonates were retrieved from Heshang Cave situated in the central Yangtze valley of China and were subjected to analysis of dissolved Si content (plus accompanying Ca and Fe analyses). Soil waters have Si/Ca of 45.5 mmol/mol, compared to only 3.2 mmol/mol in the dolomite bedrock, demonstrating that >80% of the dissolved Si must come from dissolution of silicate minerals in the soil. Drip waters have a dissolved Si concentration of ≈4.2 μg/mL, similar to that in the overlying soil water. Actively growing cave carbonates have a Si/Ca of 0.075 mmol/mol suggesting a partition coefficient for incorporation of dissolved silicon of 0.0014, in good agreement with previous laboratory studies. Extrapolating the results of these laboratory studies to the cave environment suggests that changes in Si/Ca in cave carbonates are likely to be primarily controlled by changes in drip-water Si/Ca. The drip-water Si/Ca will, in turn, be controlled by the rate of wind-blown silicate supply; by soil weathering rates; by rainfall dilution; and by precipitation of calcite. The general expectation is that these effects combine to produce high Si/Ca in speleothems during times of low rainfall. A δ18O record from a Heshang Cave stalagmite which grew between 20 and 11 thousand years ago allows these controls to be tested. Correlation of high Si/Ca with high δ18O demonstrates that regional rainfall exerts significant (but not complete) control on speleothem Si/Ca. With further understanding, speleothem Si/Ca may provide a proxy for past rainfall to complement existing proxies such as δ18O and Mg/Ca.  相似文献   
135.
《Applied Geochemistry》2005,20(1):157-168
In monitoring a minor geochemical element in groundwater or soils, a background population of values below the instrumental detection limit is frequently present. When those values are found in the monitoring process, they are assigned to the detection limit which, in some cases, generates a probability mass in the probability density function of the variable at that value (the minimum value that can be detected). Such background values could distort both the estimation of the variable at nonsampled locations and the inference of the spatial structure of variability of the variable. Two important problems are the delineation of areas where the variable is above the detection limit and the estimation of the magnitude of the variables inside those areas. The importance of these issues in geochemical prospecting or in environmental sciences, in general related with contamination and environmental monitoring, is obvious. In this paper the authors describe the two-step procedure of indicator kriging and ordinary kriging and compare it with empirical maximum likelihood kriging. The first approach consists of using a binary indicator variable for estimating the probability of a location being above the detection limit, plus ordinary kriging conditional to the location being above the detection limit. An estimation variance, however, is not available for that estimator. Empirical maximum likelihood kriging, which was designed to deal with skew distributions, can also deal with an atom at the origin of the distribution. The method uses a Bayesian approach to kriging and gives intermittency in the form of a probability map, its estimates providing a realistic assessment of their estimation variance. The pros and cons of each method are discussed and illustrated using a large dataset of As concentration in groundwater. The results of the two methods are compared by cross-validation.  相似文献   
136.
Supergene manganese deposits commonly contain K-rich Mn oxides with tunnel structure, such as cryptomelane, which are suitable for radiometric dating using the 39Ar–40Ar method. In Africa, Mn deposits have been dated by this method for localities in western and southern parts of the continent, whereas only some preliminary data are available for Central Africa. Here we present new 39Ar–40Ar ages for Mn oxide samples of the Kisenge deposit, in southwestern Katanga, Democratic Republic of the Congo. The samples represent supergene Mn oxide deposits that formed at the expense of primary Paleoproterozoic rhodochrosite-dominated carbonate ores. Main phases of Mn oxide formation are dated at c. 10.5 Ma, 3.6 Ma and 2.6 Ma for a core that crosses a mineralized interval. The latter shows a decrease in age with increasing depth, recording downward penetration of a weathering front. Surface samples of the Kisenge deposits also record a ≥ c.19.2 Ma phase, as well as c. 15.7 Ma, 14.2 Ma and 13.6 Ma phases. The obtained ages correspond to distinct periods of paleosurface development and stability during the Mio-Pliocene in Katanga. Because Katanga is a key area bordered to the North by the Congo Basin and to the East by the East African Rift System, these ages also provide constraints for the geodynamic evolution of the entire region. For the Mio-Pliocene, the Kisenge deposits record ages that are not systematically found elsewhere in Africa, although the 10.5–11 Ma event corresponds to a roughly simultaneous event in the Kalahari Manganese Field, South Africa. The rest of the Katanga paleosurface record differs somewhat from records for other parts of Africa, for which older, Eocene ages have been obtained. This difference is most probably related to the specific regional geodynamic context: uplift of the East African Plateau, with associated erosion, and the opening of the East African Rift System at c. 25 Ma are events whose effects, in the study area, interfere with those of processes responsible for the development of continent-wide paleosurfaces.  相似文献   
137.
138.
Columbite–tantalite (Coltan) is the most important niobium (Nb)- and tantalum (Ta)-bearing economic mineral, commonly occurring in rare metal granite and pegmatite, alkaline granite, syenite and carbonatite. Its high U but low common Pb contents make it an ideal mineral for U–Pb isotopic dating of Nb–Ta mineralization. In order to establish a feasible coltan dating method by in situ laser-ablation (LA) ICP–MS, we determined the U–Pb ages of five coltan samples from different pegmatites and rare-metal granites in China. In order to evaluate the potential matrix effect between different minerals, a 91500 zircon was used as external standard during analyses. The results show that, compared to the recommended ages, approximately 7–15% younger ages were yielded for the analyzed coltan samples in both single spot and line raster scan analytical methods, indicating a significant matrix effect between coltan and zircon. However, by using a coltan standard from Namibia (Coltan139), the coltan sample from Dahe pegmatite (SNNT) has a weighted mean 206Pb/238U age of 363 ± 4 Ma (2σ, n = 25) and 357 ± 5 Ma (2σ, n = 20) in single spot and line raster scan analytical methods, respectively; the coltan samples from Altai No.3 pegmatite (713-79), Yichun topaz-lepidolite granite (Yi-1) and Huangshan albite granite (LS-15) have weighted mean 206Pb/238U ages of 218 ± 2 Ma (2σ, n = 20), 160 ± 1 Ma (2σ, n = 20) and 130 ± 1 Ma (2σ, n = 20), respectively, in single spot mode. These ages agree well with the previously published data, and hence support the reliability of our analytical method. Although the analyzed coltan minerals show a large variation of chemical compositions, no significant matrix effect was observed, which suggests that a coltan material should be used as an external standard for U–Pb dating of coltan by LA–ICP–MS. Using the established analytical protocol, we date the Nanping pegmatite (NP155), a main Nb–Ta deposit in China without known age, and obtain a weighted mean 206Pb/238U age of 391 ± 4 Ma (2σ, n = 20), which is considered as the best estimation of Nb–Ta mineralization time in the area.  相似文献   
139.
In the summer and fall of 2012, during the GLAD experiment in the Gulf of Mexico, the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) used several ocean models to assist the deployment of more than 300 surface drifters. The Navy Coastal Ocean Model (NCOM) at 1 km and 3 km resolutions, the US Navy operational NCOM at 3 km resolution (AMSEAS), and two versions of the Hybrid Coordinates Ocean Model (HYCOM) set at 4 km were running daily and delivering 72-h range forecasts. They all assimilated remote sensing and local profile data but they were not assimilating the drifter’s observations. This work presents a non-intrusive methodology named Multi-Model Ensemble Kalman Filter that allows assimilating the local drifter data into such a set of models, to produce improved ocean currents forecasts. The filter is to be used when several modeling systems or ensembles are available and/or observations are not entirely handled by the operational data assimilation process. It allows using generic in situ measurements over short time windows to improve the predictability of local ocean dynamics and associated high-resolution parameters of interest for which a forward model exists (e.g. oil spill plumes). Results can be used for operational applications or to derive enhanced background fields for other data assimilation systems, thus providing an expedite method to non-intrusively assimilate local observations of variables with complex operators. Results for the GLAD experiment show the method can improve water velocity predictions along the observed drifter trajectories, hence enhancing the skills of the models to predict individual trajectories.  相似文献   
140.
Migmatites are predominant in the North Qinling (NQ) orogen, but their formation ages are poorly constrained. This paper presents a combined study of cathodoluminescence imaging, U–Pb age, trace element and Hf isotopes of zircon in migmatites from the NQ unit. In the migmatites, most zircon grains occur as new, homogeneous crystals, while some are present as overgrowth rims around inherited cores. Morphological and trace element features suggest that the zircon crystals are metamorphic and formed during partial melting. The inherited cores have oscillatory zoning and yield U–Pb ages of c. 900 Ma, representing their protolith ages. The early Neoproterozoic protoliths probably formed in an active continental margin, being a response to the assembly of the supercontinent Rodinia. The migmatite zircon yields Hf model ages of 1911 ± 20 to 990 ± 22 Ma, indicating that the protoliths were derived from reworking of Palaeoproterozoic to Neoproterozoic crustal materials. The anatexis zircon yields formation ages ranging from 455 ± 5 to 420 ± 4 Ma, with a peak at c. 435 Ma. Combined with previous results, we suggest that the migmatization of the NQ terrane occurred at c. 455–400 Ma. The migmatization was c. 50 Ma later than the c. 490 Ma ultra‐high‐P (UHP) metamorphism, indicating that they occurred in two independent tectonic events. By contrast, the migmatization was coeval with the granulite facies metamorphism and the granitic magmatism in the NQ unit, which collectively argue for their formation due to the northward subduction of the Shangdan Ocean. UHP rocks were distributed mainly along the northern margin and occasionally in the inner part of the NQ unit, indicating that they were exhumed along the northern edge and detached from the basement by the subsequent migmatization process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号