首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1341篇
  免费   17篇
  国内免费   49篇
测绘学   36篇
大气科学   64篇
地球物理   145篇
地质学   701篇
海洋学   307篇
天文学   83篇
综合类   1篇
自然地理   70篇
  2023年   4篇
  2022年   2篇
  2021年   6篇
  2020年   25篇
  2019年   42篇
  2018年   21篇
  2017年   124篇
  2016年   69篇
  2015年   62篇
  2014年   83篇
  2013年   148篇
  2012年   42篇
  2011年   55篇
  2010年   50篇
  2009年   74篇
  2008年   49篇
  2007年   65篇
  2006年   42篇
  2005年   33篇
  2004年   43篇
  2003年   28篇
  2002年   24篇
  2001年   32篇
  2000年   38篇
  1999年   35篇
  1998年   14篇
  1997年   14篇
  1996年   12篇
  1995年   8篇
  1994年   12篇
  1993年   7篇
  1992年   14篇
  1991年   12篇
  1990年   12篇
  1989年   6篇
  1988年   12篇
  1987年   10篇
  1986年   8篇
  1985年   14篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   7篇
  1980年   7篇
  1979年   4篇
  1978年   2篇
  1977年   6篇
  1974年   2篇
  1970年   2篇
  1963年   2篇
排序方式: 共有1407条查询结果,搜索用时 312 毫秒
1.
Melt inclusions in kimberlitic and metamorphic diamonds worldwide range in composition from potassic aluminosilicate to alkali-rich carbonatitic and their low-temperature derivative, a saline high-density fluid (HDF). The discovery of CO2 inclusions in diamonds containing eclogitic minerals are also essential. These melts and HDFs may be responsible for diamond formation and metasomatic alteration of mantle rocks since the late Archean to Phanerozoic. Although a genetic link between these melts and fluids was suggested, their origin is still highly uncertain. Here we present experimental results on melting phase relations in a carbonated pelite at 6 GPa and 900–1500 °C. We found that just below solidus K2O enters potassium feldspar or K2TiSi3O9 wadeite coexisting with clinopyroxene, garnet, kyanite, coesite, and dolomite. The potassium phases react with dolomite to produce garnet, kyanite, coesite, and potassic dolomitic melt, 40(K0.90Na0.10)2CO3·60Ca0.55Mg0.24Fe0.21CO3 + 1.9 mol% SiO2 + 0.7 mol% TiO2 + 1.4 mol% Al2O3 at the solidus established near 1000 °C. Molecular CO2 liberates at 1100 °C. Potassic aluminosilicate melt appears in addition to carbonatite melt at 1200 °C. This melt contains (mol/wt%): SiO2 = 57.0/52.4, TiO2 = 1.8/2.3, Al2O3 = 8.5/13.0, FeO = 1.4/1.6, MgO = 1.9/1.2, CaO = 3.8/3.2, Na2O = 3.2/3.0, K2O = 10.5/15.2, CO2 = 12.0/8.0, while carbonatite melt can be approximated as 24(K0.81Na0.19)2CO3·76Ca0.59Mg0.21Fe0.20CO3 + 3.0 mol% SiO2 + 1.6 mol% TiO2 + 1.4 mol% Al2O3. Both melts remain stable to at least 1500 °C coexisting with CO2 fluid and residual eclogite assemblage consisting of K-rich omphacite (0.4–1.5 wt% K2O), almandine-pyrope-grossular garnet, kyanite, and coesite. The obtained immiscible alkali‑carbonatitic and potassic aluminosilicate melts resemble compositions of melt inclusions in diamonds worldwide. Thus, these melts entrapped by diamonds could be derived by partial melting of the carbonated material of the continental crust subducted down to 180–200 km depths. Given the high solubility of chlorides and water in both carbonate and aluminosilicate melts inferred in previous experiments, the saline end-member, brine, could evolve from potassic carbonatitic and/or silicic melts by fractionation of Ca-Mg carbonates/eclogitic minerals and accumulation of alkalis, chlorine and water in the residual low-temperature supercritical fluid. Direct extraction from the hydrated marine sediments under conditions of cold subduction would be another possibility for the brine formation.  相似文献   
2.
Garnets in metapelitic paragneisses from the southern Drosendorf unit in the Austrian part of the Bohemian Massif exhibit two episodes of growth during the Variscan orogeny, which can be distinguished on textural and chemical grounds. The first garnet (grt1) records evidence of high-grade metamorphism in the Late Devonian (Frasnian–Famennian), while the second garnet (grt2) formed by a second high-grade event in the Early Carboniferous (Visean). Both garnet generations contain abundant inclusions, of which monazite, rutile and crystallised melt droplets are particularly useful for reconstructing P–T–t conditions. The Late Devonian age (373 ± 9 Ma) for the first episode of garnet growth was obtained from chemical dating of monazite inclusions in grt1. Metamorphic conditions during the first episode of garnet growth are estimated to have been between 0.7 and 0.8 GPa at 680–700 °C and 0.95–1.10 GPa at 745–785 °C. There followed a phase of cooling and exhumation, after which the second garnet (grt2) were formed beginning under amphibolite facies conditions and continuing prograde to peak conditions of 0.95–1.10 GPa and 745–785 °C, which are similar to those of the first garnet forming event. Subsequently, the rocks experienced near isothermal decompression to 0.5–0.8 GPa. Chemical dating of both monazite inclusions in grt2 and the matrix provide a Visean age (343 ± 3 Ma).A study of detrital zircons in these paragneisses revealed zircon forming events at around 1.2, 1.5 and 1.8 Ga, suggesting an Avalonian provenance. The lack of zircons younger than 1 Ga and the presence of Cadomian metamorphic monazite relics (652 ± 15 Ma) indicates an Early Neoproterozoic deposition age for the sedimentary protolith likely. Our documentation of a Late Devonian high-grade metamorphic event in rocks derived from Avalonian corroborates tectonic models which assume that frontal parts of the Armorican terrane had already docked with Avalonia by this time.  相似文献   
3.
An increasing number of experiments are being conducted to study the design and performance of wave energy converters. Often in these tests, a real-time realization of prospective control algorithms is applied in order to assess and optimize energy absorption as well as other factors. This paper details the design and execution of an experiment for evaluating the capability of a model-scale WEC to execute basic control algorithms. Model-scale hardware, system, and experimental design are considered, with a focus on providing an experimental setup capable of meeting the dynamic requirements of a control system. To more efficiently execute such tests, a dry bench testing method is proposed and utilized to allow for controller tuning and to give an initial assessment of controller performance; this is followed by wave tank testing. The trends from the dry bench test and wave tank test results show good agreement with theory and confirm the ability of a relatively simple feedback controller to substantially improve energy absorption. Additionally, the dry bench testing approach is shown to be an effective and efficient means of designing and testing both controllers and actuator systems for wave energy converters.  相似文献   
4.
A family of related Pc1-2 (0.2–10 s) discrete daytime geomagnetic pulsations is presented using pulsation data obtained at Davis, Antarctica, a typical polar-cap station. The morphological properties of IPRP and Pclb pulsation regimes, which maximize in amplitude and frequency of occurrence under the projection of the polar cusp, are examined. Furthermore, two other variations of discrete pulsation bursts yet to be named are also presented, viz IPFP (Intervals of Pulsations with Falling Period) and IPAP (Intervals of Pulsations with Alternating Period) which are observed on rare occasions. It is also suggested that the Pc1b (0.2–5 s) should be extended to incorporate Pc2b (5–10 s) which from the results in this paper are physically the same phenomenon and could be collectively classified as IPCP (Intervals of Pulsations with Constant Period).  相似文献   
5.
6.
Summary We present compositions of reheated melt inclusions in clinopyroxene phenocrysts from three mafic xenoliths in Breccia Museo, Campi Flegrei, Italy. Melt inclusion compositions are remarkably different from the compositions of known contemporary Campi Flegrei lavas, being significantly enriched in K2O and depleted in Na2O. Some differences are also evident in FeO* (total Fe as FeO) and TiO2 contents. The clinopyroxene phenocrysts could not have crystallised from Campi Flegrei magmas. We suggest that they originated from a volcanic system genetically very similar to, and possibly linked with, the >14 ka volcanic system of Mt. Somma, another Campanian volcano ∼ 30 km east from Campi Flegrei, from which Vesuvius subsequently developed. This result indicates a close relationship (or link) between the two volcanic systems which have until now been considered separate. We speculate that the link was established prior to eruption of the Neapolitan Yellow Tuff (NYT) (∼ 12 ka). The xenoliths were derived from a volcanic system older than the host breccias themselves. We suggest that this older volcanism had close similarities with the volcanism of the older products of Mt. Somma (∼25 ka). Received March 20, 2000; accepted November 2, 2000  相似文献   
7.
Synthetic spinel harzburgite and lherzolite assemblages were equilibrated between 1040 and 1300° C and 0.3 to 2.7 GPa, under controlled oxygen fugacity (f O 2). f O 2 was buffered with conventional and open double-capsule techniques, using the Fe−FeO, WC-WO2-C, Ni−NiO, and Fe3O4−Fe2O3 buffers, and graphite, olivine, and PdAg alloys as sample containers. Experiments were carried out in a piston-cylinder apparatus under fluid-excess conditions. Within the P-T-X range of the experiments, the redox ratio Fe3+/ΣFe in spinel is a linear function of f O 2 (0.02 at IW, 0.1 at WCO, 0.25 at NNO, and 0.75 at MH). It is independent of temperature at given Δlog(f O 2), but decreases slightly with increasing Cr content in spinel. The Fe3+/ΣFe ratio falls with increasing pressure at given Δlog(f O 2), consistent with a pressure correction based on partial molar volume data. At a specific temperature, degree of melting and bulk composition, the Cr/(Cr+Al) ratio of a spinel rises with increasing f O 2. A linear least-squares fit to the experimental data gives the semi-empirical oxygen barometer in terms of divergence from the fayalite-magnetite-quartz (FMQ) buffer:
  相似文献   
8.
Summary The stability of pargasitic amphibole in the upper mantle is a function of water content and bulk rock composition, and under water-undersaturated conditions, the stability of amphibole controls the solidus position. Experiments in the system Tinaquillo peridotite +0.2% H2O, a refractory peridotite under water-undersaturated conditions, show that amphibole is stable to 1030°C and 26 kb. In contrast, pargasitic amphibole is stable to 1150°C and 30 kb in Hawaiian pyrolite, a more fertile peridotite composition. This indicates that under water-undersaturated conditions, the most fertile part of a crystallizing mantle diapir with an inhomogeneous composition will solidify first while a more refractory component will contain an alkali-rich melt which will have the ability to metasomatize adjacent regions. The relative stabilities of amphibole in refractory and fertile bulk compositions may result in increasing rather than diminishing chemical contrasts in high temperature lherzolite, i.e. a process of metamorphic differentiation. Ti, Fe, Al and Na metasomatism can therefore be considered a normal occurrence associated with the upward migration and solidification of an H2O-bearing mantle diapir.
Der Einfluß der Gesamtgesteins-Zusammensetzung auf die Stabilität von Amphibol im oberen Mantel: Bedeutung für Solidus-Positionen und Mantel-Metasomatose
Zusammenfassung Die Stabilität pargasitischer Amphibole im oberen Mantel ist eine Funktion von Wassergehalt und Gesamtgesteins-Zusammensetzung. Unter wasser-untersättigten Bedingungen, kontrolliert die Stabilität von Amphibol die Solidus-Position. Experimente in dem System Tinaquillo Peridotit +0,2% H2O, einem refraktären Peridotit unter wasser-untersättigten Bedingungen, zeigen daß Amphibol bis 1030°C und 26 Kb stabil ist. Im Gegensatz dazu ist pargasitische Hornblende in einem Hawaii-Pyrolit, von mehr fertiler Peridotit-Zuammensetzung, bis 1150°C und 30 Kb stabil. Das zeigt, daß bei wasser-untersättigten Bedingungen der am meisten produktive Teil eines kristallisierenden Mantel-Diapirs mit inhomogener Zusammensetzung sich zuerst verfestigen wird, während eine mehr refraktäre Komponente eine alkali-reiche Schmelze enthalten wird, die wiederum die Fähigkeit hat, umliegende Bereiche metasomatisch zu beeinflussen. Die relativen Stabilitäten von Amphibol in refraktären und fertilen Gesamtzusammensetzungen können dazu führen, daß die chemischen Gegensätze in Hochtemperaturlherzoliten eher zunehmen als abnehmen, d. h. ein Prozeß metamorpher Differentiation. Ti, Fe, Al und Na Metasomatose können deshalb als ein verbreiteter Vorgang, der mit der Aufwärtsbewegung und Verfestigung eines H2O-führenden Mantel-Diapirs assoziiert ist, betrachtet werden.


With 4 Figures  相似文献   
9.
The primary occurrence of ruby in the Mogok area, northern Myanmar is exclusively found in marble along with spinel–forsterite-bearing marble and phlogopite–graphite marble. These marble units are enclosed within banded biotite–garnet–sillimanite–oligoclase gneisses. Samples of these marbles collected for C–O stable isotope analysis show two trends of δ13C–δ18O variation resulting most likely from fluid–rock interactions. Ruby-bearing marble and phlogopite–graphite marble follow a trend with coupled C–O depletion, whereas spinel–forsterite-bearing marble follows a δ18O depletion trend with relatively constant δ13C values. Ruby formation might have resulted from CO2-rich fluid–rock interaction, while spinel–forsterite-bearing marble was genetically related to CO2-poor fluid–rock interaction. Both fluids may have arisen from external sources. Based on graphite Raman spectral thermometry, the estimated temperature for phlogopite–graphite marble, and probably ruby-bearing marble, was lower than 607 °C, and for spinel–forsterite-bearing marble, lower than 710 °C. Contrasting C/O diffusion between graphite/ruby/spinel/forsterite and calcite, local variations of isotopic compositions of newly formed minerals as a result of non-pervasive fluid infiltration, and open-system isotopic disturbance during cooling may have affected C-/O-isotopic fractionations between minerals. The estimated high formation temperatures for ruby and spinel/forsterite imply that the parental fluids may have been related to nearby igneous intrusions and/or metamorphic processes. Whether these two types of fluid were genetically related is unclear based on the present data.  相似文献   
10.
Mike Solomon   《Ore Geology Reviews》2008,33(3-4):352-360
Current models of massive sulphide ore genesis in the Bathurst mining camp, New Brunswick, involve settling of sulphide particles from a stagnating, low-salinity hydrothermal plume spreading laterally in an anoxic ocean layer with minimal sulphate content. There is fragmentary evidence of ocean anoxia in the form of local fine lamination in the shales that host some of the deposits but the total organic carbon, S, Fe, U/Th, Ni/Co, V/Ni and V/Cr relationships indicate deposition under oxic or dysoxic conditions. Vanadium and Mn values range from oxic to anoxic and sulphate-reducing to non-sulphate reducing but Mn may be anomalously low due to derivation by erosion of acidic volcanic rocks. The somewhat equivocal physical and chemical data, combined with the likely disturbing effects of penecontemporaneous volcanism, considerably weaken the case for an anoxic bottom layer in a static ocean. The presence of barite with ambient seawater 34S values in Brunswick no. 12 ore, and the abundance of sulphate in modern euxinic basin waters, make a sulphate-free layer unlikely, even if anoxic. Sulphate-bearing, low-salinity fluids mixing with seawater would lead to growth of barite-bearing chimneys and baritic rubble mounds, which are not observed. A model involving brine-pool deposition better explains the major features of the Bathurst ores.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号