首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   6篇
地质学   11篇
  2023年   1篇
  2020年   3篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
排序方式: 共有11条查询结果,搜索用时 328 毫秒
1.
正Objective Lhasa terrane has recorded the geologic history concerning the formation and evolution of Paleo-Tethys and the intra-continental convergence in Qinghai–Tibet Plateau(Yin and Harrison,2000).Previous investigations have focused on the initial timing of the India-Asia collision and the Cretaceous–Cenozoic magmatism and sedimentation(Wang Tianyang et al.,2017),however,  相似文献   
2.
二叠-三叠纪之交华南地区普遍发育火山成因的粘土岩,其对于了解二叠纪末大规模火山活动及扬子板块碎屑物质来源具有重要意义。本文对扬子西缘马角坝刺林包剖面飞仙关组底部粘土岩进行了碎屑锆石U-Pb定年及原位Hf同位素测试、X衍射和全岩地球化学分析,以揭示粘土岩的岩石成分及物源信息。镜下特征、X衍射及主量元素特征表明岩石中粘土矿物主要为伊利石,含少量方解石、石英。碎屑锆石年龄显示,特征峰值年龄主要集中在2 615~2 383、1 868~1 328、1 186~778和430~246 Ma,并出现~250 Ma特征高峰,结合原位Hf同位素特征表明锆石与秦岭造山带、华南典型PTB剖面粘土岩及峨眉山大火成岩省具有较高的相似性。同时,通过微量、稀土元素分析发现粘土岩中Zr、Hf、Th、Cr、Co、Ti相对富集,与华南典型PTB粘土岩和峨眉山玄武岩相近,并结合构造背景及锆石特征,综合认为刺林包剖面PTB粘土岩来自于秦岭造山带及龙门山岛链局部剥蚀区、二叠纪末火山活动和峨眉山大火成岩省剥蚀岩体。  相似文献   
3.
The Duolong district in central Tibet hosts a number of porphyry as well as high sulfidation epithermal copper–gold deposits and prospects, associated with voluminous calc-alkaline volcanism and plutonism. In this study, we present new geochronological, geochemical, isotopic and mineralogical data for both economically mineralized and barren porphyritic intrusions from the Duobuza and Naruo porphyry Cu–Au deposits. Zircon U–Pb analyses suggest the emplacement of economically mineralized granodiorite porphyry and barren granodiorite porphyry at Naruo deposit took place at 119.8 ± 1.4 Ma and 117.2 ± 0.5 Ma, respectively. Four molybdenite samples from the Naruo deposit yield an isochron Re–Os age of 119.5 ± 3.2 Ma, indicating mineralization occurred synchronously with the emplacement of the early granodiorite porphyry. At Duobuza deposit, the barren quartz diorite porphyry intruded at 119.5 ± 0.7 Ma, and two economically mineralized intrusions intruded at 118.5 ± 1.2 Ma (granodiorite porphyry) and 117.5 ± 1.2 Ma (quartz diorite porphyry), respectively. Petrographic investigations and geochemical data indicate that all of the porphyritic intrusions were oxidized, water rich, and subduction-related calc-alkaline magmas. Zircons from the porphyritic intrusions have a wide range in the εHf (0–11.1) indicating that they were sourced from mixing of mantle-derived mafic, and crust-derived felsic melts. Moreover, the variation of trace element content of plagioclase phenocrysts indicates that the magma chambers were recharged by mafic magmas.Comparison of the composition of amphibole phenocrysts indicates the porphyry copper–gold mineralization at Duolong was generated in magma chambers at low crystallization temperatures and pressures (754° to 791 °C, 59 M to 73 MPa, n = 8), and under highly oxidizing conditions (ΔNNO 2.2 to 2.7, n = 8). In contrast, barren intrusions were sourced from the magma chambers with higher crystallization temperatures and pressures (816° to 892 °C, 111 to 232 MPa, n = 22) that were less oxidizing (ΔNNO 0.6 to 1.6, n = 22). The requirement for a thermal contrast is supported by the declining of Ti content in magnetite crystals in barren intrusions (12,550 to 34,200 ppm) versus those from economically mineralized intrusions (600 to 3400 ppm). Moreover, the V content in magnetite crystals from economically mineralized intrusions (990 to 2510 ppm) is lower than those recorded from barren intrusions (2610 to 3510 ppm), which might reflect the variation in oxidation state of the magma. The calculated water solubility of the magma forming the economically mineralized intrusions (3.2–3.7 wt%) is lower than that of magma forming the barren intrusions (4.6–6.4 wt%). Based on the chemical–physical characteristics of economically mineralized magma, our study suggests that the development of porphyry Cu–Au mineralization at Duolong was initiated by shallow-level emplacement of a magma that crystallized at lower temperatures and pressures. Experimental studies show that copper and water solubilities in silicate melts decrease with falling temperatures and pressures, indicating metals and ore-forming fluids are more likely to be released from a magma reservoir emplaced at shallow crustal levels. We propose the magnetite might be a convenient exploration tool in the search for porphyry copper mineralization because the variations in Ti and V content of mineral concentrates and rock samples are indicative of barren versus mineralized intrusions.  相似文献   
4.
Sharang is a low-fluorine, calc-alkaline porphyry Mo deposit hosted mainly in a granite porphyry of a multi-stage plutonic complex in the northern Gangdese metallogenic belt, largely with stockwork and ribbon-textured mineralization. The observed age estimates suggest that the formation of the magmatic host complex (52.9–51.6 Ma) and the ore deposit itself (52.3 Ma) occurred during the main stage of the India–Asia collision. The host rocks are characterized by lower zircon εHf(t) values than those of the pre-ore and post-ore rocks. This suggests that the Lhasa terrane basement might play an important role in the formation of Sharang ore-forming intrusions. In view of the framework of magmatic–metallogenic events we suggest that slab roll-back may have induced melting of juvenile crust and ancient continental complexes during the India–Asia collision. This proposal focuses exploration for additional molybdenum deposits on the collision zone.  相似文献   
5.
The Zedong ophiolite is the largest ophiolite massif east of Dazhuqu in the Yarlung Zangbo Suture Zone in the southern Tibetan Plateau. However, its age, geodynamic setting and relationship to the Xigaze ophiolite remain controversial. New zircon U–Pb ages, whole-rock geochemical and Nd–Pb isotopic data from ophiolitic units provide constraints on the geodynamic and tectonic evolution of the Zedong ophiolite. U–Pb zircon geochronology of dolerite lavas and late gabbro–diabase dikes yield weighted mean ages of 153.9 ± 2.5 Ma and 149.2 ± 5.1 Ma, respectively. Strong positive εNd(t) and positive Δ7/4Pb and Δ8/4Pb values indicate derivation from a highly depleted mantle source with an isotopic composition similar to that of the Indian MORB-type mantle. The geochemistry of ophiolitic lavas and early dikes are analogous to typical island arc tholeiites whereas late dikes are similar to boninites. The geochemistry of these rock types suggests multi-stage partial melting of the mantle and gradually enhanced subduction influences to the mantle source through time. Combined with the MORB-like 162.9 ± 2.8 Ma Luobusha ophiolitic lavas, we suggest that the Luobusha lavas, Zedong lavas and early dikes originated in an infant proto-arc setting whereas late dikes in the Zedong ophiolite originated in a forearc setting. Together, they represent a Neo-Tethyan subduction initiation sequence. The Late Jurassic intra-oceanic proto-arc to forearc setting of the Zedong ophiolite contrasts with the continental margin forearc setting for the Xigaze ophiolite, which suggests a laterally complex geodynamic setting for ophiolites along the Yarlung Zangbo Suture Zone.  相似文献   
6.
雄村矿区位于西藏冈底斯斑岩铜矿带西段,目前在该矿区发现了Ⅰ、Ⅱ、Ⅲ号斑岩型铜金矿体。文章通过Ⅱ号矿体硫、铅同位素研究,获得Ⅱ号矿体金属硫化物的δ~(34)S值为-1.6‰~-0.6‰,平均值-1.30‰,总硫同位素值(δ~(34)S_(ΣS))为0.99‰,与含矿斑岩的硫同位素组成(-2.1‰~+1‰,平均0.06‰)一致,均落入幔源硫范围,表明硫主要来自岩浆。含矿斑岩和金属硫化物的铅同位素组成~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb、~(208)Pb/~(204)Pb分别为18.460~18.560、15.586~15.622、38.603~38.727和17.972~18.425、15.528~15.593、38.024~38.489,两者的铅同位素组成基本一致,变化范围小,表明两者具有相同的来源。所有样品的铅同位素μ值为9.34~9.49,显示幔源特征,综合源区判别图解认为铅主要来源于幔源,有少量俯冲沉积物加入,矿床形成于与洋壳俯冲消减作用有关的岛弧构造环境。  相似文献   
7.
The Jiama deposit, located in the eastern part of the well-known Gangdese Metallogenic Belt on the Tibetan Plateau, is the largest porphyry Cu–polymetallic system in the region, with the largest exploration budget, and is economically viable in the Gangdese Belt to undergo large-scale development. The deposit is well preserved and has experienced little erosion. The proven resources of the deposit are 7.4 Mt Cu, 0.6 Mt Mo, 1.8 Mt Pb + Zn, 6.65 Moz Au, and 360.32 Moz Ag. The results presented in this paper are based on geological and tectonic mapping, geological logging, and other exploration work performed by members of the Jiama Exploration Project Team over a period of 6 years. We propose that the Jiama porphyry Cu–polymetallic system is composed of skarn Cu–polymetallic, hornfels Cu–Mo, porphyry Mo ± Cu, and distal Au mineralization. The development of skarn Cu–polymetallic orebodies at the Jiama deposit was controlled mainly by the contact zone between porphyries and marbles, an interlayer detachment zone, and the front zone of a gliding nappe structure. The hornfels Cu–Mo and porphyry Mo ± Cu orebodies were controlled mainly by a fracture system related to intrusions, and the distal Au mineralization resulted from late-stage hydrothermal alteration.On the basis of field geological logging, optical microscopy, and chemical analysis, we verify that the alteration zones in the Jiama deposit include potassic, phyllic, propylitic, and argillic alteration, with a local lithocap, as well as endoskarn and exoskarn zones. The endoskarn occurs mainly as epidote alteration in quartz diorite porphyry and granite porphyry, and is cut by massive andradite veins. The exoskarn includes garnet–pyroxene and wollastonite skarn, in which the mineralogy and mineral chemical compositions display an outward zonation with respect to the source porphyry. From the proximal skarn to the intermediate skarn to the distal skarn, the garnet/pyroxene ratio varies from > 20:1 to ~ 10:1 to ~ 5:1, the garnet color varies from red-brown to brown-green to green-yellow, and the average composition of garnet varies from Ad80.1Gr18.9(Sp + Py)1.0 to Ad76.3Gr23(Sp + Py)0.7 to Ad59.5Gr39.5(Sp + Py)1.0, respectively. The pyroxene is not as variable in composition as the garnet, and is primarily light green to white diopside with a maximum hedenbergite content of ~ 20% and an average composition of Di88.6Hd8.9Jo2.5. From the proximal skarn to the intermediate skarn to the distal skarn, the mineralization changes from Cu–Mo to Cu ± Mo to Pb–Zn ± Cu ± Au ores, respectively. The wollastonite skarn displays no zonation and hosts mainly bornite mineralization. The Cu and Mo mineralization is closely related to the potassic and phyllic zones in the porphyry–hornfels.Zircons from four mineralized porphyries yield U–Pb ages of 15.96 ± 0.5 Ma, 15.72 ± 0.14 Ma, 15.59 ± 0.09 Ma, and 15.48 ± 0.08 Ma. The Re–Os ages of molybdenite from the skarn, hornfels, and porphyry are 15.37 ± 0.15 Ma, 14.67 ± 0.37 Ma, and 14.66 ± 0.27 Ma, respectively. The present results are consistent with the findings of previous research on fluid inclusions, isotopes, and other such aspects. On the basis of the combined evidence, we propose a porphyry Cu–polymetallic system model for the Jiama deposit and suggest a regional exploration strategy that can be applied to prospecting for porphyry-skarn mineralization in the Lhasa area.  相似文献   
8.
新疆西天山吐拉苏盆地中的阿希和塔吾尔别克金矿床空间上毗邻,但矿化特征差异明显。矿相学和扫描电镜- 能谱成分分析表明,阿希金矿床矿石中金属矿物主要为黄铁矿、毒砂和白铁矿,塔吾尔别克金矿床矿石中金属矿物除黄铁矿外,还普遍发育黄铜矿、斑铜矿、黝铜矿、砷黝铜矿、闪锌矿和砷锑镍矿。两个矿床的流体包裹体均为盐水包裹体,具有低温、低盐度的特征。阿希金矿床浅地表黄铁矿的电子导型主要为P型,形成温度为 160~240℃(平均195℃);塔吾尔别克金矿床浅地表黄铁矿以N+P混合型为主,N型和P型黄铁矿的形成温度分别为300~380℃(平均352℃)和80~240℃(平均137℃)。矿石中矿物组合和组构、流体包裹体和黄铁矿热电性特征显示,塔吾尔别克金矿床的成矿温度明显大于阿希金矿床。阿希和塔吾尔别克金矿床矿石中黄铁矿单矿物 δ 34 S值范围分别为-4. 0‰~5. 3‰(平均0. 7‰)和0. 6‰~4. 7‰(平均2. 5‰),载金黄铁矿原位 δ 34 S值范围分别为-2. 6 ~5. 6‰(平均2. 4‰)和1. 9‰~3. 8‰(平均2. 9‰),表明两个矿床具有一致的单一硫源,即岩浆硫。两个矿床矿石中黄铁矿的Pb同位素组成相似,并与赋矿大哈拉军山组火山岩和花岗斑岩大致相同,表明成矿物质来源于赋矿岩浆岩。流体包裹体、特征性矿物和矿石组构特征表明,流体沸腾作用导致了阿希金矿床金的沉淀。矿体形态产状、矿物组合、矿石组构、围岩蚀变、成矿物质来源等特征表明,阿希属于典型的低硫型浅成低温热液金矿床,塔吾尔别克可能属于斑岩与浅成低温热液之间过渡型的次浅成低温热液矿化。综合黄铁矿电子导型、矿体剥蚀率、矿物组合、矿石组构和岩体/地层出露情况等特征,推测塔吾尔别克金矿的剥蚀程度明显强于阿希金矿床,其深部可能存在隐伏的斑岩型Cu- Au矿化。  相似文献   
9.
The Tibetan Plateau is one of the most significant Cu poly-metallic mineralization regions in the world and preserves important information related to subductional and collisional porphyry Cu mineralization. This study investigates a new occurrence of Cu mineralization-related andesitic porphyries in the western domain of the Gangdese magmatic belt and assesses its petrologic, zircon U-Pb geochronology, whole-rock chemistry, and Sr-Nd-Hf-Pb isotope data. Zircon U-Pb dating of three ore-related porphyries yields crystallization ages of 212–211 Ma. These ages are consistent with previous molybdenite Re-Os dating, indicating a late Triassic magmatic and Cu mineralization event in the western Gangdese magmatic belt. Nb, Ta, and Ti depletion, Th and LREE enrichment, and high La/Yb and Th/Yb ratios in addition to high U/Yb ratios from zircons suggest that the magma was generated in an active continental arc setting. The porphyries have radiogenic isotopic compositions with (87Sr/86Sr)i 0.70431–0.70473, εNd(t) +1.1 to +3.8, (207Pb/204Pb)i 15.601–15.622, and (208Pb/204Pb)i 38.450–38.693, as well as high positive zircon εHf(t) values from +6.2 to +10.6 (mean value 8.3), corresponding to model ages (TDM) ranging from 509 Ma to 819 Ma (mean 646 Ma). This suggests that the andesitic magmatism was dominantly sourced from depleted mantle materials that were modified by subducted oceanic sediment-derived melts during the subduction of the Neo-Tethys Ocean. The mineralization-related porphyries contain amphibole and epidote, as well as high whole-rock Fe2O3/FeO and zircon Ce4+/Ce3+ ratios, suggesting hydrous and highly oxidized parent magmas. Considering the existing Cu mineralization and highly oxidized magma of the well-preserved Triassic andesitic igneous rocks in the western Gangdese belt, the subduction-related continental arc magma system is favorable for subduction-related porphyry Cu deposits. The existence of Luerma porphyry mineralization demonstrates that there are at least five generations of porphyry Cu-(Mo-Au) mineralization in the Gangdese magmatic belt, which advances the timeframe of porphyry mineralization to the late Triassic.  相似文献   
10.
扬子地块西南缘红泥坡矿床是近年来新发现的大型铜矿床。本文通过流体包裹体岩相学、显微测温、激光拉曼成分分析和硫化物原位S同位素分析,揭示了红泥坡铜矿床的成矿物质来源、成矿流体来源及矿质沉淀机制。该矿床成矿过程分为火山-沉积期和热液成矿期。热液成矿期石英+方解石+硫化物阶段(Ⅰ)的石英中发育纯CO2包裹体、水溶液-CO2包裹体、含固相的水溶液-CO2包裹体、含固相的水溶液包裹体以及富液相两相水溶液包裹体。各类包裹体成群分布,均一温度(106~500℃)和盐度(8.8%~59.8%)变化大。激光拉曼分析表明成矿流体中挥发分成分为H2O、CO2和少量CH4。火山-沉积期黄铁矿原位δ34S值为9.18‰~9.34‰,为海水硫和岩浆硫的混合硫;热液成矿期硫化物的原位δ34S值为4.42‰~5.26‰,为岩浆硫和少量地层硫的混合硫。综合矿床成矿时代、流体包裹体及S同位素组成特征,认为古元古代火山-沉积作用形成含Fe和Cu的矿源...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号