首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1856篇
  免费   402篇
  国内免费   412篇
测绘学   80篇
大气科学   184篇
地球物理   788篇
地质学   1212篇
海洋学   89篇
天文学   231篇
综合类   41篇
自然地理   45篇
  2024年   10篇
  2023年   49篇
  2022年   47篇
  2021年   92篇
  2020年   91篇
  2019年   111篇
  2018年   88篇
  2017年   148篇
  2016年   124篇
  2015年   162篇
  2014年   176篇
  2013年   187篇
  2012年   129篇
  2011年   190篇
  2010年   139篇
  2009年   183篇
  2008年   102篇
  2007年   160篇
  2006年   125篇
  2005年   71篇
  2004年   42篇
  2003年   49篇
  2002年   40篇
  2001年   25篇
  2000年   38篇
  1999年   49篇
  1998年   9篇
  1997年   7篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1988年   5篇
  1986年   1篇
  1980年   1篇
  1958年   1篇
  1954年   4篇
排序方式: 共有2670条查询结果,搜索用时 250 毫秒
1.
2.
Using a Rayleigh distillation fractionation model, we calculate that the maximum isotope fractionation potentially achievable is less than 5% during the early stages of gas release from a sample. Our calculation corrects the erroneous conclusions of Gautheron and Moreira (2003), who re‐interpreted the plume‐like neon isotopic compositions found in metasomatic apatite from a south‐eastern Australian xenolith (Matsumoto et al., 1997) to be the result of Rayleigh‐type isotope fractionation of originally MORB‐type neon during stepheating gas extraction. We stress that the modelling of neon isotopic fractionation by Gautheron and Moreira (2003) is incorrect, and that the finding of a plume‐like neon isotopic composition in the apatite by Matsumoto et al. (1997) remains a quite valid and robust conclusion.  相似文献   
3.
ABSTRACT. Although considerable attention has been paid to the record of temperature change over the last few centuries, the range and rate of change of atmospheric circulation and hydrology remain elusive. Here, eight latitudinally well-distributed (pole-equator-pole), highly resolved (annual to decadal) climate proxy records are presented that demonstrate major changes in these variables over the last 2000 years. A comparison between atmospheric 14C and these changes in climate demonstrates a first-order relationship between a variable Sun and climate. The relationship is seen on a global scale.  相似文献   
4.
The regionally extensive, coarse-grained Bakhtiyari Formation represents the youngest synorogenic fill in the Zagros foreland basin of Iran. The Bakhtiyari is present throughout the Zagros fold-thrust belt and consists of conglomerate with subordinate sandstone and marl. The formation is up to 3000 m thick and was deposited in foredeep and wedge-top depocenters flanked by fold-thrust structures. Although the Bakhtiyari concordantly overlies Miocene deposits in foreland regions, an angular unconformity above tilted Paleozoic to Miocene rocks is expressed in the hinterland (High Zagros).

The Bakhtiyari Formation has been widely considered to be a regional sheet of Pliocene–Pleistocene conglomerate deposited during and after major late Miocene–Pliocene shortening. It is further believed that rapid fold growth and Bakhtiyari deposition commenced simultaneously across the fold-thrust belt, with limited migration from hinterland (NE) to foreland (SW). Thus, the Bakhtiyari is generally interpreted as an unmistakable time indicator for shortening and surface uplift across the Zagros. However, new structural and stratigraphic data show that the most-proximal Bakhtiyari exposures, in the High Zagros south of Shahr-kord, were deposited during the early Miocene and probably Oligocene. In this locality, a coarse-grained Bakhtiyari succession several hundred meters thick contains gray marl, limestone, and sandstone with diagnostic marine pelecypod, gastropod, coral, and coralline algae fossils. Foraminiferal and palynological species indicate deposition during early Miocene time. However, the lower Miocene marine interval lies in angular unconformity above ~ 150 m of Bakhtiyari conglomerate that, in turn, unconformably caps an Oligocene marine sequence. These relationships attest to syndepositional deformation and suggest that the oldest Bakhtiyari conglomerate could be Oligocene in age.

The new age information constrains the timing of initial foreland-basin development and proximal Bakhtiyari deposition in the Zagros hinterland. These findings reveal that structural evolution of the High Zagros was underway by early Miocene and probably Oligocene time, earlier than commonly envisioned. The age of the Bakhtiyari Formation in the High Zagros contrasts significantly with the Pliocene–Quaternary Bakhtiyari deposits near the modern deformation front, suggesting a long-term (> 20 Myr) advance of deformation toward the foreland.  相似文献   

5.
Ion-microprobe U–Pb analyses of 589 detrital zircon grains from 14 sandstones of the Alborz mountains, Zagros mountains, and central Iranian plateau provide an initial framework for understanding the Neoproterozoic to Cenozoic provenance history of Iran. The results place improved chronological constraints on the age of earliest sediment accumulation during Neoproterozoic–Cambrian time, the timing of the Mesozoic Iran–Eurasia collision and Cenozoic Arabia–Eurasia collision, and the contribution of various sediment sources of Gondwanan and Eurasian affinity during opening and closure of the Paleotethys and Neotethys oceans. The zircon age populations suggest that deposition of the extensive ~ 1 km-thick clastic sequence at the base of the cover succession commenced in latest Neoproterozoic and terminated by Middle Cambrian time. Comparison of the geochronological data with detrital zircon ages for northern Gondwana reveals that sediment principally derived from the East African orogen covered a vast region encompassing northern Africa and the Middle East. Although most previous studies propose a simple passive-margin setting for Paleozoic Iran, detrital zircon age spectra indicate Late Devonian–Early Permian and Cambrian–Ordovician magmatism. These data suggest that Iran was affiliated with Eurasian magmatic arcs or that rift-related magmatic activity during opening of Paleotethys and Neotethys was more pronounced than thought along the northern Gondwanan passive-margin. For a Triassic–Jurassic clastic overlap assemblage (Shemshak Formation) in the Alborz mountains, U–Pb zircon ages provide chronostratigraphic age control requiring collision of Iran with Eurasia by late Carnian–early Norian time (220–210 Ma). Finally, Cenozoic strata yield abundant zircons of Eocene age, consistent with derivation from arc magmatic rocks related to late-stage subduction and/or breakoff of the Neotethys slab. Together with the timing of foreland basin sedimentation in the Zagros, these detrital zircon ages help bracket the onset of the Arabia–Eurasia collision in Iran between middle Eocene and late Oligocene time.  相似文献   
6.
A combined study of petrography, whole-rock major and trace elements as well as Rb?Sr and Sm?Nd isotopes, and mineral oxygen isotopes was carried out for two groups of low-T/UHP granitic gneiss in the Dabie orogen. The results demonstrate that metamorphic dehydration and partial melting occurred during exhumation of deeply subducted continent. Zircon δ18O values of ? 2.8 to + 4.7‰ for the gneiss are all lower than normal mantle values of 5.3 ± 0.3‰, consistent with 18O depletion of protolith due to high-T meteoric-hydrothermal alteration at mid-Neoproterozoic. Most samples have extremely low 87Sr/86Sr ratios at t1 = 780 Ma, but very high 87Sr/86Sr ratios at t2 = 230 Ma. This suggests intensive fluid disturbance due to the hydrothermal alteration of protoliths during Neoproterozoic magma emplacement and the metamorphic dehydration during Triassic continental collision. Rb–Sr isotopes, Th/Ta vs. La/Ta and Th/Hf vs. La/Nb relationships suggest that Group I gneiss experienced lower degrees of hydrothermal alteration, but higher degrees of dehydration, than Group II gneiss. The two groups of gneiss have similar patterns of REE and trace element partition. Group I gneiss displays good correlations between Nb and LREEs but no correlations between Nb and LILEs (Rb, Ba, Pb, Th and U), indicating differential mobilities of LILEs during the dehydration. Thus the correlation between Nb and LREEs is inherited from protolith rather than caused by metamorphic modification. Relative to Group I gneiss, Group II gneiss has stronger negative Eu anomaly, lower contents of Sr and Ba but higher contents of Rb, Th and U. In particular, Nb correlates with LILEs (e.g., Rb, Sr, Ba, Th and U), but not with LREEs (La and Ce). This may indicate decoupling between the dehydration and LILEs transport during continental collision. Furthermore, dehydration melting may have occurred due to breakdown of muscovite during “hot” exhumation. Group II gneiss has extremely low contents of FeO + MgO + TiO2 (1.04 to 2.08 wt.%), high SiO2 contents of 75.33 to 78.23 wt%, and high total alkali (Na2O + K2O) contents (7.52 to 8.92 wt.%), comparable with compositions predicted from partial melting of felsic rocks by experimental studies. Almost no UHP metamorphic minerals survived; felsic veins of fine-grain minerals occurs locally between coarse-grain minerals, resulting in a kind of metatexite migmatites due to dehydration melting without considerable escape of felsic melts from the host gneiss. In contrast, Group I gneiss only shows metamorphic dehydration. Therefore, the two groups of gneiss show contrasting behaviors of fluid–rock interaction during the continental collision.  相似文献   
7.
Fourier transform infrared spectrometry (FTIR) analyses of olivines from peridotite xenoliths found in southern African kimberlites indicate 0 to 80 ppm H2O concentrations. OH absorbance profiles across olivine grains show homogeneous H contents from core to edge for most samples. In one sample the olivines are H-free, while another has olivines characterized by lower H contents at the grain edges compared to the cores, indicating H loss during transport of the xenolith to the surface. Flat or near-flat H profiles place severe constraints on the duration of H loss from olivine grains, with implications for kimberlite magma ascent rates. Diffusion equations were used to estimate times of H loss of about 4 h for the sample with heterogeneous olivine H contents. Resulting kimberlite ascent rates are calculated to be 5-37 m s−1 minimum, although these estimates are highly dependent on volatile contents and degassing behavior of the host kimberlite magma. Xenolithic olivines from alkali basalts generally have lower H contents and more pronounced H diffusion profiles than do those from kimberlites. This difference is likely caused by higher magma temperatures and lower ascent rates of alkali basalts compared to kimberlites.  相似文献   
8.
Published literature argues that the Limpopo Belt can be subdivided into three zones, each with a distinctive geological character and tectono-metamorphic fingerprint. There are currently two contrasting schools of thought regarding the tectono-metamorphic evolution of the CZ. One camp argues that geochronological, structural and prograde pressure–temperature (PT) evidence collectively indicate that the CZ underwent tectono-metamorphism at ca. 2.0 Ga which followed a clockwise PT evolution during a transpressive orogeny that was initiated by the collision of the Kaapvaal and Zimbabwe cratons. Deformation and metamorphism consistent with this scenario are observed in the southern part of the NMZ but are curiously absent from the whole of the SMZ. The opposing view argues that the peak metamorphism associated with the collision of the Kaapvaal and Zimbabwe cratons occurred at ca. 2.6 Ga and the later metamorphic event is an overprint associated with reactivation along Archean shear zones. Post-peak-metamorphic conditions, which at present cannot be convincingly related to either a ca. 2.6 or 2.0 Ga event in the CZ reveal contrasting retrograde paths implying either near-isothermal decompression and isobaric cooling associated with a ‘pop-up’ style of exhumation or steady decompression–cooling linked to exhumation controlled by erosion. Recent data argue that the prograde evolution of the ca. 2.0 Ga event is characterised by isobaric heating prior to decompression–cooling. Contrasting PT paths indicate that either different units exist within the CZ that underwent different PT evolutions or that some PT work is erroneous due to the application of equilibrium thermobarometry to mineral assemblages that are not in equilibrium. The morphology of the PT path(s) for the ca. 2.6–2.52 Ga event are also a matter of dispute. Some workers have postulated an anticlockwise PT evolution during this period whilst others regard this metamorphic event as following a clockwise evolution. Granitoid magmatism is broadly contemporaneous in all three zones at ca. 2.7–2.5 suggesting a possible causal geodynamic link. PT contrasts between and within the respective zones prevent, at present, the construction of a coherent and inter-related tectonic model that can account for all of the available evidence. Detailed and fully-integrated petrological and geochronological studies are required to produce reliable PTt paths that may resolve some of these pertinent issues.  相似文献   
9.
非传统稳定同位素(Fe-Cu-Zn-Mo)理论与数据相结合提高了科研工作者对地质体系氧化还原过程的理解。本文对这一相对较新的领域进行了综述,包括与氧化还原过程相关的同位素分馏理论和实验约束、时空尺度下的氧逸度以及同位素示踪氧化还原过程。稳定同位素理论预测,Fe-Cu-Zn-Mo同位素应该对氧化还原状态的变化能够做出响应。结果表明,Fe同位素作为岩浆过程、表生过程、俯冲带流体性质"氧逸度计"应用前景广阔;Cu同位素在岩浆、热液、陆地系统可以很好地示踪氧化还原过程;Zn同位素由于络合过程分馏已经被用在许多不同环境中作为含硫/碳流体迁移的敏感示踪剂;Mo同位素作为古氧逸度计可有效重建古海洋-大气氧化还原状态。  相似文献   
10.
The South China Block (SCB) is among the large-scale W-Sn mineralized regions of the globe. The Laojunshan W-Sn-dominant ore area (LOA) in the western part of the SCB preserves the records of the tectonic history of the Tethys realm extending through North Vietnam, and Yangtze to Cathaysia blocks, with coeval formation of giant metallic deposits. The prolonged tectonic activities and their control on the genesis and spatio-temporal distribution of giant metallic deposits in the LOA provide a window for a holistic understanding of the tectono-metallogenesis of the SCB. In this study, we present results from a multi-chronologic study to determine the timing of formation of the cassiterite-wolframite-scheelite mineralization. The results suggest three distinct tectono-metallogenic periods in the LOA during the geodynamic evolution of the surrounding tectonic units. The opening of the Proto-Tethys Ocean between the Yangtze-Indochina blocks and the westward Paleo-Pacific subduction beneath the Cathaysia block (420–380 Ma) jointly contributed to the Silurian to early Devonian intracontinental orogeny in the middle of the SCB that involved top-to-the-north thrusting along NE-striking shear zones. This event generated the Dulong-Song Chay granitoids, together with the formation of Xinzhai Sn deposit related to sheared mylonitic granites (ca. 419 Ma) and pegmatites (ca. 389 Ma), which include the early-stage Sn-sulfide skarn (ca. 418 Ma) and the late-stage Sn-bearing schist (ca. 389 Ma). During the Late Permian to Late Triassic (260–220 Ma), with the closure of the Proto-Tethys oceans in the west and ongoing Paleo-Pacific westward subduction in the east, the SCB and Indochina Block (IB) were amalgamated which also marks the time of formation of the Nanwenhe scheelite skarn deposit. The subducted Paleo-Tethys oceanic crust was likely entrained by the nearby rising Emeishan mantle plume (270–259 Ma), which formed the Maguan diabase (ca. 260 Ma) that shows significantly older Re-Os model age of ca. 268 Ma, suggesting that the Nanwenhe mineralization is potentially derived from ca. 260 Ma source. Furthermore, the intraplate shortening induced thin skinned crustal deformation and low grade metamorphism (ca. 230 Ma), with the main stage of scheelite-Sn-Mo mineralization (229.9, 229.8 and 219 Ma) and contemporary formation of the pegmatite (230.7 Ma). The Late Cretaceous involved two episodes of alternate extension and shortening, driven by the subduction polarity change from northwestward subduction of the Okhotomorsk block to northward subduction of the NeoTethys seafloor. The evolution of the LOA consists of the NW–SE transpression ending ca. 100 Ma, the WNW–ESE extension in the earlier episode lasting from 100 Ma to 86 Ma, the WNW–ESE transpression beginning at ca. 85 Ma and the NS extension in the later episode during the latest Cretaceous, which produced the extension-related three periods of Laojunshan granitic magmatism and coeval Sn-W mineralization, with ages in the range of 90–89 Ma, 87–85 Ma and 83–79 Ma. We also evaluate the implications of magmatic-metamorphic-metallogenic degassing on the regional paleoclimatic history.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号