首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2523篇
  免费   638篇
  国内免费   950篇
测绘学   108篇
大气科学   181篇
地球物理   1006篇
地质学   2355篇
海洋学   101篇
天文学   253篇
综合类   45篇
自然地理   62篇
  2024年   12篇
  2023年   76篇
  2022年   107篇
  2021年   150篇
  2020年   156篇
  2019年   172篇
  2018年   141篇
  2017年   253篇
  2016年   209篇
  2015年   242篇
  2014年   282篇
  2013年   315篇
  2012年   185篇
  2011年   310篇
  2010年   226篇
  2009年   264篇
  2008年   141篇
  2007年   226篇
  2006年   172篇
  2005年   105篇
  2004年   70篇
  2003年   64篇
  2002年   43篇
  2001年   23篇
  2000年   43篇
  1999年   58篇
  1998年   6篇
  1997年   8篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   6篇
  1990年   3篇
  1989年   1篇
  1988年   11篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1958年   2篇
  1954年   5篇
排序方式: 共有4111条查询结果,搜索用时 31 毫秒
1.
2.
Using a Rayleigh distillation fractionation model, we calculate that the maximum isotope fractionation potentially achievable is less than 5% during the early stages of gas release from a sample. Our calculation corrects the erroneous conclusions of Gautheron and Moreira (2003), who re‐interpreted the plume‐like neon isotopic compositions found in metasomatic apatite from a south‐eastern Australian xenolith (Matsumoto et al., 1997) to be the result of Rayleigh‐type isotope fractionation of originally MORB‐type neon during stepheating gas extraction. We stress that the modelling of neon isotopic fractionation by Gautheron and Moreira (2003) is incorrect, and that the finding of a plume‐like neon isotopic composition in the apatite by Matsumoto et al. (1997) remains a quite valid and robust conclusion.  相似文献   
3.
ABSTRACT. Although considerable attention has been paid to the record of temperature change over the last few centuries, the range and rate of change of atmospheric circulation and hydrology remain elusive. Here, eight latitudinally well-distributed (pole-equator-pole), highly resolved (annual to decadal) climate proxy records are presented that demonstrate major changes in these variables over the last 2000 years. A comparison between atmospheric 14C and these changes in climate demonstrates a first-order relationship between a variable Sun and climate. The relationship is seen on a global scale.  相似文献   
4.
The regionally extensive, coarse-grained Bakhtiyari Formation represents the youngest synorogenic fill in the Zagros foreland basin of Iran. The Bakhtiyari is present throughout the Zagros fold-thrust belt and consists of conglomerate with subordinate sandstone and marl. The formation is up to 3000 m thick and was deposited in foredeep and wedge-top depocenters flanked by fold-thrust structures. Although the Bakhtiyari concordantly overlies Miocene deposits in foreland regions, an angular unconformity above tilted Paleozoic to Miocene rocks is expressed in the hinterland (High Zagros).

The Bakhtiyari Formation has been widely considered to be a regional sheet of Pliocene–Pleistocene conglomerate deposited during and after major late Miocene–Pliocene shortening. It is further believed that rapid fold growth and Bakhtiyari deposition commenced simultaneously across the fold-thrust belt, with limited migration from hinterland (NE) to foreland (SW). Thus, the Bakhtiyari is generally interpreted as an unmistakable time indicator for shortening and surface uplift across the Zagros. However, new structural and stratigraphic data show that the most-proximal Bakhtiyari exposures, in the High Zagros south of Shahr-kord, were deposited during the early Miocene and probably Oligocene. In this locality, a coarse-grained Bakhtiyari succession several hundred meters thick contains gray marl, limestone, and sandstone with diagnostic marine pelecypod, gastropod, coral, and coralline algae fossils. Foraminiferal and palynological species indicate deposition during early Miocene time. However, the lower Miocene marine interval lies in angular unconformity above ~ 150 m of Bakhtiyari conglomerate that, in turn, unconformably caps an Oligocene marine sequence. These relationships attest to syndepositional deformation and suggest that the oldest Bakhtiyari conglomerate could be Oligocene in age.

The new age information constrains the timing of initial foreland-basin development and proximal Bakhtiyari deposition in the Zagros hinterland. These findings reveal that structural evolution of the High Zagros was underway by early Miocene and probably Oligocene time, earlier than commonly envisioned. The age of the Bakhtiyari Formation in the High Zagros contrasts significantly with the Pliocene–Quaternary Bakhtiyari deposits near the modern deformation front, suggesting a long-term (> 20 Myr) advance of deformation toward the foreland.  相似文献   

5.
Ion-microprobe U–Pb analyses of 589 detrital zircon grains from 14 sandstones of the Alborz mountains, Zagros mountains, and central Iranian plateau provide an initial framework for understanding the Neoproterozoic to Cenozoic provenance history of Iran. The results place improved chronological constraints on the age of earliest sediment accumulation during Neoproterozoic–Cambrian time, the timing of the Mesozoic Iran–Eurasia collision and Cenozoic Arabia–Eurasia collision, and the contribution of various sediment sources of Gondwanan and Eurasian affinity during opening and closure of the Paleotethys and Neotethys oceans. The zircon age populations suggest that deposition of the extensive ~ 1 km-thick clastic sequence at the base of the cover succession commenced in latest Neoproterozoic and terminated by Middle Cambrian time. Comparison of the geochronological data with detrital zircon ages for northern Gondwana reveals that sediment principally derived from the East African orogen covered a vast region encompassing northern Africa and the Middle East. Although most previous studies propose a simple passive-margin setting for Paleozoic Iran, detrital zircon age spectra indicate Late Devonian–Early Permian and Cambrian–Ordovician magmatism. These data suggest that Iran was affiliated with Eurasian magmatic arcs or that rift-related magmatic activity during opening of Paleotethys and Neotethys was more pronounced than thought along the northern Gondwanan passive-margin. For a Triassic–Jurassic clastic overlap assemblage (Shemshak Formation) in the Alborz mountains, U–Pb zircon ages provide chronostratigraphic age control requiring collision of Iran with Eurasia by late Carnian–early Norian time (220–210 Ma). Finally, Cenozoic strata yield abundant zircons of Eocene age, consistent with derivation from arc magmatic rocks related to late-stage subduction and/or breakoff of the Neotethys slab. Together with the timing of foreland basin sedimentation in the Zagros, these detrital zircon ages help bracket the onset of the Arabia–Eurasia collision in Iran between middle Eocene and late Oligocene time.  相似文献   
6.
A combined study of petrography, whole-rock major and trace elements as well as Rb?Sr and Sm?Nd isotopes, and mineral oxygen isotopes was carried out for two groups of low-T/UHP granitic gneiss in the Dabie orogen. The results demonstrate that metamorphic dehydration and partial melting occurred during exhumation of deeply subducted continent. Zircon δ18O values of ? 2.8 to + 4.7‰ for the gneiss are all lower than normal mantle values of 5.3 ± 0.3‰, consistent with 18O depletion of protolith due to high-T meteoric-hydrothermal alteration at mid-Neoproterozoic. Most samples have extremely low 87Sr/86Sr ratios at t1 = 780 Ma, but very high 87Sr/86Sr ratios at t2 = 230 Ma. This suggests intensive fluid disturbance due to the hydrothermal alteration of protoliths during Neoproterozoic magma emplacement and the metamorphic dehydration during Triassic continental collision. Rb–Sr isotopes, Th/Ta vs. La/Ta and Th/Hf vs. La/Nb relationships suggest that Group I gneiss experienced lower degrees of hydrothermal alteration, but higher degrees of dehydration, than Group II gneiss. The two groups of gneiss have similar patterns of REE and trace element partition. Group I gneiss displays good correlations between Nb and LREEs but no correlations between Nb and LILEs (Rb, Ba, Pb, Th and U), indicating differential mobilities of LILEs during the dehydration. Thus the correlation between Nb and LREEs is inherited from protolith rather than caused by metamorphic modification. Relative to Group I gneiss, Group II gneiss has stronger negative Eu anomaly, lower contents of Sr and Ba but higher contents of Rb, Th and U. In particular, Nb correlates with LILEs (e.g., Rb, Sr, Ba, Th and U), but not with LREEs (La and Ce). This may indicate decoupling between the dehydration and LILEs transport during continental collision. Furthermore, dehydration melting may have occurred due to breakdown of muscovite during “hot” exhumation. Group II gneiss has extremely low contents of FeO + MgO + TiO2 (1.04 to 2.08 wt.%), high SiO2 contents of 75.33 to 78.23 wt%, and high total alkali (Na2O + K2O) contents (7.52 to 8.92 wt.%), comparable with compositions predicted from partial melting of felsic rocks by experimental studies. Almost no UHP metamorphic minerals survived; felsic veins of fine-grain minerals occurs locally between coarse-grain minerals, resulting in a kind of metatexite migmatites due to dehydration melting without considerable escape of felsic melts from the host gneiss. In contrast, Group I gneiss only shows metamorphic dehydration. Therefore, the two groups of gneiss show contrasting behaviors of fluid–rock interaction during the continental collision.  相似文献   
7.
Fourier transform infrared spectrometry (FTIR) analyses of olivines from peridotite xenoliths found in southern African kimberlites indicate 0 to 80 ppm H2O concentrations. OH absorbance profiles across olivine grains show homogeneous H contents from core to edge for most samples. In one sample the olivines are H-free, while another has olivines characterized by lower H contents at the grain edges compared to the cores, indicating H loss during transport of the xenolith to the surface. Flat or near-flat H profiles place severe constraints on the duration of H loss from olivine grains, with implications for kimberlite magma ascent rates. Diffusion equations were used to estimate times of H loss of about 4 h for the sample with heterogeneous olivine H contents. Resulting kimberlite ascent rates are calculated to be 5-37 m s−1 minimum, although these estimates are highly dependent on volatile contents and degassing behavior of the host kimberlite magma. Xenolithic olivines from alkali basalts generally have lower H contents and more pronounced H diffusion profiles than do those from kimberlites. This difference is likely caused by higher magma temperatures and lower ascent rates of alkali basalts compared to kimberlites.  相似文献   
8.
Kalahari 008 and 009 are two lunar meteorites that were found close to each other in Botswana. Kalahari 008 is a typical lunar anorthositic breccia; Kalahari 009 a monomict breccia with basaltic composition and mineralogy. Based on minor and trace elements Kalahari 009 is classified as VLT (very-low-Ti) mare basalt with extremely low contents of incompatible elements, including the REE. The Lu-Hf data define an age of 4286 ± 95 Ma indicating that Kalahari 009 is one of the oldest known basalt samples from the Moon. It provides evidence for lunar basalt volcanism prior to 4.1 Ga (pre-Nectarian) and may represent the first sample from a cryptomare. The very radiogenic initial 176Hf/177Hf (εHf = +12.9 ± 4.6), the low REE, Th and Ti concentrations indicate that Kalahari 009 formed from re-melting of mantle material that had undergone strong incompatible trace element depletion early in lunar history. This unusually depleted composition points toward a hitherto unsampled basalt source region for the lunar interior that may represent a new depleted endmember source for low-Ti mare basalt volcanism. Apparently, the Moon became chemically very heterogeneous at an early stage in its history and different cumulate sources are responsible for the diverse mare basalt types.Evidence that Kalahari 008 and 009 may be paired includes the similar fayalite content of their olivine, the identical initial Hf isotope composition, the exceptionally low exposure ages of both rocks and the fact that they were found close to each other. Since cryptomaria are covered by highland ejecta, it is possible that these rocks are from the boundary area, where basalt deposits are covered by highland ejecta. The concentrations of cosmogenic radionuclides and trapped noble gases are unusually low in both rocks, although Kalahari 008 contains slightly higher concentrations. A likely reason for this difference is that Kalahari 008 is a polymict breccia containing a briefly exposed regolith, while Kalahari 009 is a monomict brecciated rock that may never have been at the surface of the Moon.Altogether, the compositions of Kalahari 008 and 009 permit new insight into early lunar evolution, as both meteorites sample lunar reservoirs hitherto unsampled by spacecraft missions. The very low Th and REE content of Kalahari 009 as well as the depletion in Sm and the lack of a KREEP-like signature in Kalahari 008 point to a possible source far from the influence of the Procellarum-KREEP Terrane, possibly the lunar farside.  相似文献   
9.
新甘交界红柳河地区二叠系剖面中发育有块状和枕状玄武岩,激光ArAr定年确定的玄武岩形成时间在280~300Ma之间;玄武岩SiO_2含量为44.71%~49.27%,Mg~#为42.4~52.4,(~(87)Sr/~(86)Sr)_i为0.703834~0.706819,(~(143)Nd/~(144)Nd)_i为0.518861~0.5121220,ε_(Nd)(t)为-3.01~3.67。玄武岩微量元素、稀土元素和Sr-Nd同位素均显示出与OIB性质相似的特征。其弱富集的不相容元素和轻稀土元素,显示出源区富集的特点。而Zr/Nb(14.63)和Th/U(2.83)则指示岩浆中可能有少量循环原始地幔和亏损地幔物质的加入。综合对比北山南部柳园地区二叠纪玄武岩源区特征,提出红柳河地区早二叠世OIB型玄武岩主要来源于北山地区晚古生代裂谷带下伏已被不同程度改造的富集地幔。  相似文献   
10.
采用锆石SHRIMP U-Pb同位素定年方法,获得新甘交界红柳河蛇绿岩中的堆晶辉长岩年龄为516.2±7.1Ma,代表了红柳河蛇绿岩的形成年龄;侵入到红柳河蛇绿岩中未变形变质的黑云母花岗岩的年龄为404.8±5.2Ma,限定了红柳河蛇绿岩侵位的上限。作为南天山洋壳的残骸,红柳河蛇绿岩新的可靠年龄数据表明,南天山洋在早寒武世已经开始形成,并于早泥盆世埃姆斯阶之前在红柳河地区已经闭合。上述洋盆演化过程对进一步研究东天山的大地构造演化具有重要的意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号