首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2302篇
  免费   469篇
  国内免费   1003篇
测绘学   273篇
大气科学   10篇
地球物理   880篇
地质学   2004篇
海洋学   304篇
天文学   16篇
综合类   157篇
自然地理   130篇
  2024年   2篇
  2023年   11篇
  2022年   121篇
  2021年   109篇
  2020年   112篇
  2019年   131篇
  2018年   84篇
  2017年   121篇
  2016年   137篇
  2015年   173篇
  2014年   214篇
  2013年   227篇
  2012年   270篇
  2011年   264篇
  2010年   219篇
  2009年   291篇
  2008年   190篇
  2007年   245篇
  2006年   234篇
  2005年   153篇
  2004年   100篇
  2003年   72篇
  2002年   50篇
  2001年   47篇
  2000年   44篇
  1999年   54篇
  1998年   26篇
  1997年   16篇
  1996年   14篇
  1995年   15篇
  1994年   8篇
  1993年   6篇
  1991年   5篇
  1990年   1篇
  1988年   4篇
  1986年   1篇
  1957年   2篇
  1954年   1篇
排序方式: 共有3774条查询结果,搜索用时 15 毫秒
41.
变形监测基准点的稳定性检验   总被引:1,自引:0,他引:1  
基准点的稳定性评价,是变形观测数据处理时不可忽视的重要内容。该文对基准点构网和不构网2种情况时的数据处理方法进行了探讨。  相似文献   
42.
三峡大坝建成之后,大量泥沙滞留于库区,出库泥沙量减少,坝下河床冲刷而提供相当数量的泥沙,支流湖泊供沙也发生变化,这将使进入河口地区的泥沙有所减少。三峡大坝以上长江干流和支流建设新的大坝,南水北调、封山育林、退耕还林以及减少水土流失都将进一步减少长江进入河口地区的泥沙。由此估计,三峡大坝建成后的百年内长江输入河口地区的泥沙约为2.0×108~2.5×108t/a;冰后期长江三角洲形成和发育期间的长江年均输沙量为1.84×108~2.28×108t。二者的数值相当接近,然而与近50年的观测(4.33×108t/a)相差甚远,长江流域的气候变化和人类活动可能是造成这一现象的原因。文章着重说明中国和长江上游人口的增长、种植作物的改变可能是水土流失、长江泥沙量增长的主要原因。  相似文献   
43.
Paleo-earthquake studies on the eastern section of the Kunlun fault   总被引:1,自引:0,他引:1  
Introduction East Kunlun active fault is one of the largest sinistral slip fault zones in northern Tibetan Pla-teau. The fault tails primarily after the ancient eastern Kunlun suture zone, which was reactivatedby the northward subduction of the Indian plate beneath the Eurasian plate. The western end of thefault starts near the western flank of the Buxedaban peak in Qinghai Province. The fault then ex-tends eastwards through the Kusai Lake, Xidatan, Dongdatan, Alag Lake, Tuosuo Lak…  相似文献   
44.
《Applied Geochemistry》2005,20(1):89-99
The reaction of the clay fraction of the Callovo–Oxfordian hard shale formation hosting the French underground laboratory site, with high pH NaOH, KOH and Ca(OH)2 solutions has been investigated through closed system experiments at 60, 90 and 120 °C over 6, 24 and 168 h. The mineralogical composition of the run samples has been determined using X-ray diffraction (XRD) of randomly oriented powders showing the formation of different species of zeolites (analcime, chabazite, phillipsite) and Ca silicates (tobermorite, katoite). The phyllosilicates were studied using XRD of oriented preparations and cation exchange capacity measurements. Detrital or diagenetic mica and chlorite in the <2 μm fraction remain unchanged. On the contrary, the smectite and random illite–smectite mixed layer minerals are strongly reactive. The expandable layers of montmorillonite type are selectively dissolved while beidellitic ones survive or are transitionally formed.  相似文献   
45.
46.
Characterization of shale reservoirs, which are typically of low permeability, is very difficult because of the presence of multiscale structures. While three-dimensional (3D) imaging can be an ultimate solution for revealing important complexities of such reservoirs, acquiring such images is costly and time consuming. On the other hand, high-quality 2D images, which are widely available, also reveal useful information about shales’ pore connectivity and size. Most of the current modeling methods that are based on 2D images use limited and insufficient extracted information. One remedy to the shortcoming is direct use of qualitative images, a concept that we introduce in this paper. We demonstrate that higher-order statistics (as opposed to the traditional two-point statistics, such as variograms) are necessary for developing an accurate model of shales, and describe an efficient method for using 2D images that is capable of utilizing qualitative and physical information within an image and generating stochastic realizations of shales. We then further refine the model by describing and utilizing several techniques, including an iterative framework, for removing some possible artifacts and better pattern reproduction. Next, we introduce a new histogram-matching algorithm that accounts for concealed nanostructures in shale samples. We also present two new multiresolution and multiscale approaches for dealing with distinct pore structures that are common in shale reservoirs. In the multiresolution method, the original high-quality image is upscaled in a pyramid-like manner in order to achieve more accurate global and long-range structures. The multiscale approach integrates two images, each containing diverse pore networks – the nano- and microscale pores – using a high-resolution image representing small-scale pores and, at the same time, reconstructing large pores using a low-quality image. Eventually, the results are integrated to generate a 3D model. The methods are tested on two shale samples for which full 3D samples are available. The quantitative accuracy of the models is demonstrated by computing their morphological and flow properties and comparing them with those of the actual 3D images. The success of the method hinges upon the use of very different low- and high-resolution images.  相似文献   
47.
A wave type based method for real-time prediction of strong ground motion (SGM) accelerogram is developed. Real-time prediction of SGM is requested in predictive building control systems to trigger and control actuator systems achieving the goal of reduction of the structural deformations during an on-going earthquake. It is well known that SGM is a classic example of non-stationary stochastic process with temporal variation of both amplitude and frequency content. The developed non-parametric model considers the non-homogeneity of the seismic process which contains different wave types with the individual frequency contents and time-dependency amplitude distribution pattern. Therefore, an important part of the method is to detect dominant seismic wave phases. Prediction of seismic signal is undertaken by applying frequency adaptive windowing approach, which leads to predict the on-coming signal in time window tt based on the measured data in the time window t. Besides use of the frequency adaptive windowing, constant windowing and semi-adaptive windowing approaches are deployed. The results show that use of the adaptive time windows relevant to dominant frequency of the signal will enable the model to catch and predict the most dominant frequencies. Performance of the proposed model is verified by the use of 97 free-field accelerograms, which were applied to train and validate the prediction model. The selected accelerograms were measured above the soil type C and D according Eurocode 8 and their Moment magnitude are ranging between 6.2 and 7.7. The learning capability of the radial basis function Artificial Neural Network is used to reconstruct the SGM accelerogram. The most significant advantage of the proposed model is the concept of wave type based modeling which has the advantage of a conceptual physical modeling of the seismic process. Comparison of the real-time predicted and the observed accelerograms shows a high correlation when the frequency adaptive approach is applied. This paper lays a foundation for more effective use of real-time predictive control systems and potential for future extension in active structural control as well as in real-time seismology.  相似文献   
48.
The development of a two-surface elastic–plastic bounding surface PY model for cyclic lateral pile motions is described. The kinematic-hardening model is applicable to the analysis of pile foundations subjected to loading with arbitrary azimuths relative to the pile axis. The model realistically captures the hysteretic energy damping associated with dynamic loading of subsea foundations through physically correct plastic mechanisms and provides results consistent with those observed in physical tests including cyclic loading. Its performance is demonstrated in element states of stress and in pile foundation analyses. The development based on the incremental theory of plasticity results in more robust solutions than may be obtained using alternative elastic, variable moduli and deformation plasticity formulations.  相似文献   
49.
50.
鄂尔多斯盆地晚三叠世发育大型坳陷型湖盆。湖水的升降影响着湖盆水体面积的大小、深浅以及沉积体系发育分布,进而影响全盆地晚三叠延长统地层生储盖组合的发育特征。通过野外剖面、钻井岩芯中古生物化石的鉴定,结合古生物组合特征对鄂尔多斯盆地晚三叠世湖盆的古生物生态环境进行了恢复。确定鄂尔多斯晚三叠世湖盆是一个最大水深不超过60 m的浅水湖盆,属于温暖潮湿的淡水-半咸水环境。从湖岸到湖心,可以划分为预测古水深1~2 m的河流-沼泽生物相带;预测古水深3~15 m的滨岸-河口三角洲生物相带;预测古水深15~35 m的浅湖生物相带;预测古水深在35~60 m范围的半-深湖生物相带。这些生物相带的划分,为恢复鄂尔多斯盆地晚三叠世时期的岩相古地理奠定了基础,为盆地延长组沉积边界、盆地内沉积体系发育展布以及沉积相带的划分提供了坚实的地质依据,具有理论与实际意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号