首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   23篇
  国内免费   41篇
大气科学   29篇
地球物理   3篇
地质学   89篇
海洋学   1篇
综合类   1篇
自然地理   7篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   2篇
  2020年   6篇
  2019年   4篇
  2018年   5篇
  2017年   2篇
  2016年   5篇
  2015年   10篇
  2014年   7篇
  2013年   9篇
  2012年   18篇
  2011年   4篇
  2010年   9篇
  2009年   9篇
  2008年   7篇
  2007年   10篇
  2006年   11篇
  2005年   3篇
  2002年   1篇
排序方式: 共有130条查询结果,搜索用时 13 毫秒
71.
和田玉的稀土元素丰富,准确测定稀土元素含量对于揭示和田玉成矿物质来源、成矿流体的性质和矿床成因具有重要的意义。本文通过比较硝酸-氢氟酸、四硼酸锂-偏硼酸锂碱熔两种前处理方法,确定了使用硝酸-氢氟酸溶样,再采用电感耦合等离子体质谱法(ICP-MS)测定和田玉中钇镧铈镨钕钐铕钆铽镝钬铒铥镱镥15种稀土元素的含量。为降低基体效应,以103Rh和49In作内标补偿基体效应和校正灵敏度漂移,样品检出限为0.0008~0.0091μg/L,回收率为101.0%~120.0%,精密度(RSD)为0.55%~1.83%(n=11)。本方法的用酸量少,空白值低,应用于不同地区和田玉的分析,其稀土元素的配分模式特征为右倾型轻稀土富集,初步探讨的稀土元素丰度特征可为研究主产区宝玉石的矿床成因提供依据。  相似文献   
72.
新疆准噶尔东北缘蕴都卡拉矿床是世界上少见的金铜钴组合,位于新疆阿尔曼太金、铜、铁、铬成矿带,主要赋存于泥盆纪中基性火山岩及后期侵位的石炭系闪长岩中。矿区韧脆性剪切变形强烈,矿化蚀变发育,主要为黄铜矿化、黄铁矿化、碳酸盐化、硅化、蛇纹石化、绿泥石化。矿体主要分布于中泥盆统北塔山组玄武岩和闪长岩中的黄铜矿化—黄铁矿化—硅化带中。矿体呈脉状、似层状和不规则状。矿床处于航磁异常和Au、Cu、Ag、Mo、Cr、Ni、Co等元素组成的化探异常中,异常带呈北西—南东向延伸,对矿床勘查具有较好的指示作用。本文研究了矿床的地质特征,总结了找矿方法,构建了综合找矿模型,提出了进一步找矿方向,以期为矿区进一步勘查提供依据。  相似文献   
73.
大东沟铅锌矿位于新疆阿尔泰南缘的克兰盆地,赋存于康布铁堡组上亚组火山-沉积岩系,矿体直接围岩为变质钙质砂岩及不纯的大理岩,矿体呈层状、似层状、透镜状分布,与地层产状一致。利用LA-ICP-MS锆石U-Pb测年法,获得矿区2件康布铁堡组上亚组变质流纹岩加权平均年龄分别为(388.9±3.2)Ma(MSWD=3.3)和(400.7±1.6)Ma(MSWD=1.3)。结合前人的年龄数据,将克兰盆地康布铁堡组的时代厘定为晚志留世末期至早泥盆世(413~389 Ma)。大东沟铅锌矿为火山岩容矿的喷流沉积型矿床(VMS),2件变质流纹岩年龄限定大东沟铅锌矿的成矿作用发生在早泥盆世(401~389 Ma)。  相似文献   
74.
恰夏铜矿床位于新疆阿尔泰山南缘克兰火山-沉积盆地内,赋矿地层主要为下泥盆统康布铁堡组上亚组变质岩系.脉状铜矿化主要特征为:早期顺层石英脉,呈脉状或透镜状沿变质片理分布,有星点状黄铁矿产出;晚期含铜黄铁矿-石英脉,斜切变质围岩,黄铜矿以浸染状分布于石英脉裂隙中.石英脉中流体包裹体主要为富CO2包裹体,其次为水溶液包裹体,同时含有少量的碳质流体包裹体.显微测温研究表明,早期顺层石英中原生富CO2流体包裹体,CO2三相点温度(tm,CO2)集中在-61.5~-57.5℃,CO2部分均一温度(th,CO2)集中在25~27℃,完全均一温度(th,tot)集中于223~280℃,流体密度为0.82~0.90 g/cm3;含铜黄铁矿-石英脉中原生富CO2包裹体的tm,CO2集中于-61.5~-58.7℃,th,CO2集中在23.5~28.7℃,th,tot集中在230 ~ 310℃,流体密度0.81~0.86 g/cm3.成矿流体为中高温、中低盐度、富CO2的CO2-H2O-NaCl±CH4±N2体系.恰夏铜矿脉状铜矿化的成矿流体特征与造山型金矿床的流体包裹体特征类似,结合矿床产出的地质背景、控矿构造特征,认为脉状铜矿化的成因与造山-变质热液有关,是阿尔泰山南缘晚泥盆世一二叠纪造山-变质作用的产物.SRXRF测试富CO2流体包裹体中金属微量元素,显示其富集Au,可能表明富CO2流体对金的富集起到一定作用.  相似文献   
75.
阿舍勒铜锌矿床是中国阿尔泰南缘典型的VMS型矿床,赋存于阿舍勒盆地阿舍勒组一套海相火山-沉积岩系中。Ⅰ号主矿体呈层状位于凝灰岩与玄武岩之间,矿化呈(致密)块状、条带状、层纹状、稠密浸染状、细脉状。在潜英安岩中也伴有热液蚀变及矿化。前人对该矿床进行了大量的研究,但对容矿火山岩、潜火山岩及成矿时代还缺乏年代学资料。文章应用LA-MC-ICP-MS锆石U-Pb定年法对矿体的直接围岩凝灰岩、玄武岩、潜英安岩和石英闪长岩进行了研究。获得年龄:凝灰岩为(387.0±4.2) Ma,玄武岩为(388.2±3.3) Ma,潜英安岩为(379.4±0.8) Ma,石英闪长岩为(378.5±0.9) Ma,限定阿舍勒组时代为早-中泥盆世。阿舍勒铜锌矿为同生沉积矿床,Ⅰ号主矿体产于玄武岩和凝灰岩之间,限定了Ⅰ号主矿体喷流沉积期形成于早泥盆世末期(388~387 Ma);潜英安岩的U-Pb年龄为(379.4±0.8) Ma,表明与潜火山岩有关的岩浆热液期矿化形成于中泥盆世。获得玄武岩、凝灰岩、潜英安岩和石英闪长岩中古老锆石U-Pb年龄变化于743~2505 Ma,暗示了阿尔泰造山带存在前寒武纪结晶基底。  相似文献   
76.
康吉昌  刘敏 《地质科学》2011,46(2):559-569
克兰盆地是阿尔泰山南缘最大的火山沉积盆地,位于阿尔泰南部增生造山带的弧后盆地内.该盆地内矿床多为喷流沉积改造型铅锌矿床,它们具有相似的成因,且形成于同一时期,研究表明这些矿床也具有相似的流体包裹体特征、均一温度及组成.成矿流体物理化学条件的改变对成矿有重要意义.  相似文献   
77.
利用阿勒泰地区7个测站1961~2011年冬季(11月到翌年3月)逐日最低温度资料,采用百分位定义法给出各站发生冬季极端低温事件的阈值。采用气候趋势系数和气候倾向率、Gumbel分布函数及R/S分析等多种统计方法分析阿勒泰地区各站冬季极端低温事件的气候特征。结果表明:阿勒泰地区各站冬季极端低温事件发生阈值为-26~-36℃。阿勒泰地区冬季极端低温事件频次倾向率均呈减少趋势,强度倾向率均呈减弱趋势。50 a一遇冬季极端低温事件极值东部较低,西部较高。阿勒泰地区西部地区冬季极端低温强度<-50℃的概率较小,东部地区冬季极端低温事件强度<-50℃概率较大。根据R/S分析,阿勒泰地区冬季极端低温事件未来发生频次可能会有所增多,冬季极端低温事件未来发生强度可能会有所增强。  相似文献   
78.
阿尔泰南缘古生代康布铁堡组火山岩系是许多铁矿、铜锌矿以及铅锌矿的赋矿围岩,但该赋矿地层目前还缺乏精确的同位素年代学资料。通过对变安山质凝灰岩和花岗岩LA-ICP-MS锆石U-Pb定年,获得阿尔泰南缘苏普特背斜花岗岩的年龄为412.7±0.78 Ma,安山质凝灰岩的年龄为411.2±3.4 Ma,表明阿尔泰南缘苏普特背斜内泥盆纪早期存在着强烈的火山活动,与区内广泛发育的火山岩属于同一事件的产物,具有相同的动力学背景。为研究阿尔泰南缘古生代构造演化及苏普特背斜异常区提供了重要的理论依据。  相似文献   
79.
玉勒肯哈腊苏斑岩铜金(钼)矿床位于准噶尔盆地东北缘,卡拉先格尔斑岩铜矿带北西端.该矿床含矿斑岩为海西早期花岗闪长斑岩和花岗斑岩,围岩为中泥盆统北塔山组火山-沉积岩系,同时还有海西晚期和印支期岩浆岩(热)活动的记录.在整个斑岩铜矿带中,玉勒肯矿床构造作用最为强烈,主要受到区域额尔齐斯和二台断裂带多期构造活动的影响,矿区大部分含矿斑岩和围岩发生了不同程度的片理化或糜棱岩化作用.矿石矿物的赋存状态,除早期细脉浸染状斑岩型矿化外,还叠加有后期的沿片理面、糜棱面理,及破劈理分布的细脉状矿化.同位素年代学研究表明,玉勒肯矿区记录了从泥盆纪到三叠纪的构造、岩浆和成矿事件.综合本文及前人研究资料,本文认为卡拉先格尔斑岩铜矿带,在中-晚泥盆世(390~360Ma)时处于与俯冲有关的岛弧构造背景,有中酸性斑岩侵入以及斑岩型Cu-Mo矿化;早石炭世(360 ~ 330Ma)时,经历了碰撞阶段的改造成矿作用,矿化沿糜棱面理发育;中晚石炭世(330~300Ma)为后碰撞阶段,发育以辉钼矿-黄铜矿-钾长石脉为特征的叠加成矿;早二叠世(270 ~ 260Ma)进入造山后伸展阶段,形成以沿破劈理面分布的叠加成矿;进入三叠纪以后,为陆内造山阶段,也见少量脉状矿化.可见,玉勒肯哈腊苏矿床是一个具叠加改造成矿特色的斑岩型矿床.  相似文献   
80.
The Eastern Junggar terrane of the Central Asian Orogenic Belt includes a Late Paleozoic assemblage of volcanic rocks of mixed oceanic and arc affinity, located in a structurally complex belt between the Siberian plate, the Kazakhstan block, and the Tianshan Range. The early history of these rocks is not well constrained, but the Junggar terrane was part of a Cordilleran-style accreted arc assemblage by the Late Carboniferous. Late Paleozoic volcanic rocks of the northern part of the east Junggar terrane are divided, from base to top, into the Early Devonian Tuoranggekuduke Formation (Fm.), Middle Devonian Beitashan Fm., Middle Devonian Yundukala Fm., Late Devonian Jiangzierkuduke Fm., Early Carboniferous Nanmingshui Fm. and Late Carboniferous Batamayineishan Fm. We present major element, trace element and Sr–Nd isotopic analyses of 64 (ultra)mafic to intermediate volcanic rock samples of these formations. All Devonian volcanic rocks exhibit remarkably negative Nb, Ta and Ti anomalies on the primitive mantle-normalized trace element diagrams, and are enriched in more highly incompatible elements relative to moderately incompatible ones. Furthermore, they have subchondritic Nb/Ta ratios, and their Zr/Nb and Sm/Nd ratios resemble those of MORBs, characteristics of arc-related volcanic rocks. The Early Devonian Tuoranggekuduke Fm., Middle Devonian Beitashan Fm., and Middle Devonian Yundukala Fm. are characterized by tholeiitic and calc-alkaline affinities. In contrast, the Late Devonian Jiangzierkuduke Fm. contains a large amount of tuff and sandstone, and its volcanic rocks have dominantly calc-alkaline affinities. We therefore propose that the Jiangzierkuduke Fm. formed in a mature island arc setting, and other Devonian Fms. formed in an immature island arc setting. The basalts from the Nanmingshui Fm. have geochemical signatures between N-MORB and island arcs, indicating that they formed in a back-arc setting. In contrast, the volcanic rocks from the Batamayineishan Fm. display geochemical characteristics of continental intraplate volcanic rocks formed in an extensional setting after collision. Thus, we propose a model that involves a volcanic arc formed by northward subduction of the ancient Junggar ocean and amalgamation of different terranes during the Late Paleozoic to interpret the formation of the Late Paleozoic volcanic rocks in the Eastern Junggar terrane, and the Altai and Junggar terranes fully amalgamated into a Cordilleran-type orogen during the end of Early Carboniferous to the Middle–Late Carboniferous.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号