首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3011篇
  免费   1268篇
  国内免费   4441篇
测绘学   100篇
大气科学   12篇
地球物理   483篇
地质学   7835篇
海洋学   59篇
天文学   6篇
综合类   108篇
自然地理   117篇
  2024年   79篇
  2023年   143篇
  2022年   321篇
  2021年   364篇
  2020年   379篇
  2019年   485篇
  2018年   346篇
  2017年   494篇
  2016年   511篇
  2015年   548篇
  2014年   549篇
  2013年   610篇
  2012年   691篇
  2011年   623篇
  2010年   436篇
  2009年   383篇
  2008年   258篇
  2007年   357篇
  2006年   339篇
  2005年   187篇
  2004年   100篇
  2003年   95篇
  2002年   85篇
  2001年   69篇
  2000年   50篇
  1999年   53篇
  1998年   29篇
  1997年   24篇
  1996年   19篇
  1995年   18篇
  1994年   12篇
  1993年   21篇
  1992年   13篇
  1991年   3篇
  1990年   1篇
  1988年   5篇
  1987年   14篇
  1983年   1篇
  1958年   1篇
  1954年   4篇
排序方式: 共有8720条查询结果,搜索用时 359 毫秒
101.
102.
103.
A suprasubduction zone oceanic back-arc setting for the Paleoproterozoic Kandra ophiolite complex (KOC) in southern India has been suggested from geochemical signatures. The telescoped segments of thin deformed sedimentary successions of shallow marine to pelagic affinity, overlying a basaltic substrate and preserved within thrust slices of the KOC, are tectonically juxtaposed against the Eastern Dharwar craton margin. In the northern thrust slice (Kandra village succession), about 150 m of sedimentary strata show intercalation of quartz arenite and basaltic flow in the lower part, grading upwards to heterolithic sandstone-mudstone deposited above the storm wave base. In the southeastern part of the KOC (Gurramkonda succession), deep-water greywacke turbidite, pelagic chert, mafic tuff and volcaniclastics, and quartz arenite deposited below the storm wave base, are preserved as thrust bound packets. Intermittent basaltic outpourings punctuated deeper water deposition as evidenced by alternate metachert and metabasalt layers, and emplacement of basaltic rocks along small thrusts which transpose stratification. Craton margin sediments consists of immature, coarse terrigenous clastics intercalated with thin mafic tuff, suggesting influence of mass flow processes giving way to fluvial sedimentation in the lower part of the Udaigiri Group. Further up, fine grained plane laminated siltstone-shale with rippled sandstone lenses grade upward to compositionally mature quartz arenite deposited close to the craton margin, with signatures of tidal- and wave reworking. The association of stratigraphic successions of two contrasting depositional environments in the KOC adds to the spectrum of variation of sedimentary collage of the ocean plate stratigraphy. The Kandra village and Gurramkonda successions of the KOC, possibly represent ancient arc-trench milieu, and shallower part of oceanic marginal basin respectively. Paleoproterozoic subduction-accretion process led to collapse of these basins and tectonic emplacement of the KOC against the Eastern Dharwar craton margin which hosted near shore sedimentary succession of the Udaigiri Group, occurring west of the KOC.  相似文献   
104.
The Hahaigang W–Mo polymetallic skarn deposit is located in the central-eastern part of Gangdese tectono-magmatic belt in Lhasa terrane, Tibet. The deposit was discovered in 2007 with currently proven 46 million tons of WO3 ores, 12 million tons of Mo ores, and 1.31 million tons of combined Cu–Pb–Zn ores, at an average grade of 0.20% WO3, 0.07% Mo, 0.026% Cu, 0.49% Pb, and 3.1% Zn. Ore bodies occur in veins or disseminations, and are confined within the NE-striking Dalong fault zone which is hosted by the Lower-Permian Pangna Group of dominantly quartz sandstone and slate. Several granitic plutons are exposed in the area or known from drill-holes. Ages of these granitic plutons are determined by using zircon U–Pb LA–ICP–MS method. For example, the biotite monzogranite yields a 206Pb/238U–207Pb/238U concordia age of 58.66 ± 0.90 Ma and a weighted mean 206Pb/238U age of 57.02 ± 0.42 Ma. The granite porphyry yields a 206Pb/238U–207Pb/238U concordia age of 109.1 ± 8.9 Ma and a weighted mean 206Pb/238U age of 114.0 ± 2.6 Ma. The biotite monzogranite yields a weighted mean 206Pb/238U age of 56.1 ± 1.1 Ma. Re–Os isochron age of 63.2 ± 3.2 Ma from 5 molybdenite samples collected from the W–Mo skarn ores is also obtained in this study. The zircon U–Pb and molybdenite Re–Os geochronological data suggest that the W–Mo mineralization was not temporally associated with any of the dated igneous plutons. However, the molybdenite Re–Os age of 63.2 ± 3.2 Ma indicates that the W–Mo mineralization might have occurred during the main India–Eurasia collision that was initiated around 65 Ma. Microprobe analysis of ilvaite that occurs in two generations in the W–Mo skarn ores reveals a close relationship to Ca–Fe–F-rich hydrothermal fluids, which were probably derived from deeply-seated magmas. We suggest that ascent of the fluids was strictly controlled by the ore-controlling Dalong fault zone, and that chemical interaction and metasomatism between the fluids and the Lower-Permian Pangna quartz-feldspathic host rocks produced the ilvaite and the W–Mo polymetallic skarn deposit during the main India–Eurasia collision. Although the majority of the polymetallic deposits in the Gangdese belt are reported to be either pre- or post-main collision, it is evident from this study that the main collision also produced W–Mo polymetallic mineralization within the belt.  相似文献   
105.
We present new data on the highly fractionated Late Triassic I-type Liyuantang granite, which is located in the middle segment of the South Qinling Subzone of central China and is associated with molybdenum mineralization. Zircon U–Pb dating indicates that the granite was emplaced at 210.1 ± 1.9 Ma, with a single zircon containing an inherited core that yielded an age of 449.8 ± 7.1 Ma. Magmatic zircons from the granite have εHf(t) values of − 4.0 to + 1.5, whereas the inherited zircon core has a εHf(t) value of − 5.3. Calculated Hf model ages of crust formation are indicative of substantial contributions from melting of Proterozoic crust that ranges in age from 1501 to 1155 Ma. The granite contains high concentrations of Si, Al, Na, and K, is enriched in Rb, Th, and U, has elevated Rb/Sr and Ga/Al ratios, and is depleted in Ti, Fe, Mn, Mg, Ca, and P, with significantly negative Eu anomalies (δEu = 0.33–0.50), similar to other highly fractionated I-type granites. These data indicate that the magmas that formed the Liyuantang pluton were produced during partial melting of Proterozoic garnet-absent quartz amphibolites. The magmas then fractionated apatite, feldspar, Ti-bearing phases, biotite, and hornblende prior to emplacement.Re–Os isotope analysis of molybdenite from the study area yields a mineralization age of 200.9 ± 6.2 Ma, suggesting that the Liyuantang molybdenum deposit formed during a previously unrecognized mineralization event. The present results, together with previous data, demonstrate that highly fractionated I-type granites associated with the second pulse of magmatism in the South Qinling subzone should be considered highly prospective for mineral exploration, focusing on Triassic–Early Jurassic granitoids.  相似文献   
106.
Despite widespread evidence for atmospheric dust deposition prior to the Quaternary, quantitative rate data remains sparse. As dust influences both climate and biological productivity, the absence of quantitative dust data limits the comprehensiveness of models of pre-Quaternary climate and biogeochemical cycles. Here, we propose that inorganic matter contained in coal primarily records atmospheric dust deposition. To test this, we use the average concentration of inorganic matter in Permian coal to map global patterns and deposition rates of atmospheric dust over Pangea. The dust accumulation rate is calculated assuming Permian peat carbon accumulation rates in temperate climates were similar to Holocene rates and accounting for the loss of carbon during coalification. Coal-derived rates vary from 0.02 to 25 g m 2 year 1, values that fall within the present-day global range. A well-constrained East–West pattern of dust deposition corresponding to expected palaeoclimate gradients extends across Gondwana with maximum dust deposition rates occurring close to arid regions. A similar pattern is partially defined over the northern hemisphere. Patterns are consistent with the presence of two large global dust plumes centred on the tropics. The spatial patterns of dust deposition were also compared to dust cycle simulations for the Permian made with the Community Climate System Model version 3 (CCSM3). Key differences between the simulations and the coal data are the lack of evidence for an Antarctic dust source, higher than expected dust deposition over N and S China and greater dust deposition rates over Western Gondwana. This new coal-based dust accumulation rate data expands the pre-Neogene quantitative record of atmospheric dust and can help to inform and validate models of global circulation and biogeochemical cycles over the past 350 Myr.  相似文献   
107.
108.
《Gondwana Research》2016,29(4):1257-1281
This work examines the relations between the Cadomian-type peri-Gondwana blocks and West and North Africa and Arabia (WNA) and the sediments derived therefrom during the Neoproterozoic. This provides insights regarding the formation, development, and paleogeography of the Cadomian domain, and when interpreted in the framework of plate tectonic processes allows proposing an internally consistent, though tentative, picture of the Neoproterozoic history of the domain before the Cadomian orogeny. Since WNA is built of terranes that were originally dispersed over a ≥ 2000 km wide area (E–W), it was only when their assembly was well advanced (≤ ca. 680–650 Ma ago) that they formed a continuous continental area with a well-defined margin next to which a continuous peripheral Cadomian domain could be shaped. Most likely it formed by accretion of various elements to the newly formed WNA margin, which is supported by several lines of evidence. The exposed basement rocks of the Cadomian domain are usually ≤ 600–580 Ma old (Late Ediacaran and Early Paleozoic). Before the Cadomian orogeny much of the domain comprised marine basins, several hundred kilometers wide, filled mainly by thick siliciclastics associated with variable amounts of igneous rocks. A large fraction of the sediments was produced by extensive erosion of WNA, but the West African Craton probably had a secondary role as a sediment source. Subduction-related igneous rocks occur in basinal areas close to the northern active margin of the Cadomian domain, and these areas were affected by the Cadomian orogeny. There arc-derived, rather than WNA-derived detritus appears to be present, proving the existence of adjacent magmatic arcs, although the arcs are little exposed. As sediment transport was necessarily down-slope, the distribution of WNA- and arc-derived detritus and its termporal changes provide insights regarding the slopes of basin-floors and thus the paleogeography, while changes in their distribution most likely record tectonic activity. However, these issues still require further study. The Late Ediacaran paleogeographic setting recorded by the exposures is interpreted as comprising backarc basins and magmatic arcs, with igneous activity and deformation being more pronounced in the outboard parts of the domain (including basinal areas), similar to the situation in the Western Pacific. It is hypothesized that, as in the latter area, the entire system was controlled by retreat (roll back) of the bordering subduction zone, and that this setting was produced ca. 600 Ma ago or somewhat earlier by modification of a pre-existing active margin that was initially shaped by the accretion of the Cadomian domain to WNA. However, the absence of direct evidence about the early history of the domain does not allow interpretation beyond this general picture.  相似文献   
109.
It is generally believed that andesite–dacite–rhyolite suites and contemporary porphyry Cu deposits are related to subduction in active continental margin settings. However, it is still unclear which tectonic events result in the generation of porphyry Cu deposits and whether asthenospheric mantle material is involved in this process. Widespread andesitic–dacitic felsic intrusions associated with porphyry Cu deposits and rarer basalts have been identified in the Late Triassic southern Yidun arc (SYA) of eastern Tibet. However, few geochronological and geochemical data are available for these basalts, thereby hampering the development of geodynamic models for this magmatic event and the formation of related porphyry Cu deposits in the region. Here we present the first geochemical and SIMS (secondary ion mass spectrometry) zircon U–Pb data of Xiaxiaoliu basalts in the SYA. The age of the Late Triassic Xiaxiaoliu basalts (216.1 ± 2.8 Ma) is consistent with the timing of emplacement of voluminous porphyritic intrusions and the formation of Cu deposits within the SYA (peaking at 215–217 Ma). The Xiaxiaoliu basalts have E-MORB-like trace element patterns that are free of negative Nb–Ta anomalies, and have high 143Nd/144Nd(t) values, suggesting they were sourced from asthenospheric mantle without any arc-type influence. These observations, combined with the fact that some Late Triassic mineralized porphyritic intrusions within the SYA have adakitic affinities, suggest that the basalts and other igneous rocks and associated porphyry Cu deposits within the SYA were produced by tearing of a westward-dipping slab, triggering the upwelling of asthenospheric mantle material during subduction of the Garze–Litang Ocean crust.  相似文献   
110.
The Koru and Tesbihdere mining districts in Biga Peninsula, Northwestern Turkey, consist of twelve deposits covering approximately 12 km2. The epithermal Au-Ag enriched base metal veins and associated low-grade breccia and stockwork at Koru and Tesbihdere are hosted by Oligocene subaerial and calc-alkaline volcanic rocks including basaltic andesite lavas, dacitic lava-tuffs, rhyolitic lava-domes and tuffs. NW- to N-trending strike-slip faults and E- and NE-trending faults constitute the most important ore-controlling structures in the Koru and Tesbihdere districts respectively. In the Koru mining district, galena is the dominant ore mineral in barite-quartz veins containing sphalerite, chalcopyrite, pyrite, bornite, enargite and tennantite. According to base metal content, the Tesbihdere mining district can be subdivided into sphalerite-galena dominated Tesbihdere mineralization and chalcopyrite-pyrite dominated Bakır and Kuyu Zones mineralization. Gold is present in small quantities with maximum 3.14 g/t Au values either as free grains in quartz or as micro inclusions in pyrite and galena. The most widespread silver minerals are polybasite, pearceite, argentite and native silver which commonly occur as replacements of galena, sphalerite and pyrite, and other sulfides, or as fillings of microfractures in sulfides and quartz.Microthermometric measurements of primary liquid-rich fluid inclusions in sphalerite, barite and quartz in Koru indicate that the veins were formed at temperatures between 407 and 146 °C from fluids with salinities between 0.7 and 12.5 wt.% equiv. NaCl. Barite from the Tahtalıkuyu, Kuyutaşı and 5th Viraj mineralization show the highest homogenization temperatures. Fluid inclusion data for ore-stage quartz and sphalerite from the Tesbihdere mining district, indicate that these minerals were deposited at temperatures between 387 and 232 °C from more diluted fluids with moderate salinities between 0.2 and 10.6 wt.% NaCl equiv. Tahtalıkuyu and 5th Viraj mineralization show only boiling trends while Kuyutaşı, Tesbihdere, Bakır and Kuyu Zones mineralization show both boiling and isothermal mixing trends. The O and H isotope compositions of ore fluids from the Tahtalıkuyu (δ18O =  1.40 to 0.25‰; δD =  72.49 to − 52.68‰) and Kuyutaşı (δ18O =  2.29 to 3.59‰; δD =  90.70 to − 70.93‰) mineralization indicate that there was a major contribution from a magmatic component to ore genesis. Based on 9 quartz samples associated with orebodies at the Tesbihdere mining district, the relatively higher δ18O and lower δD isotope compositions from hydrothermal fluids could be attributed to a relatively dilute fluid derived by the mixing with meteoric water. The Pb isotope compositions also reveal that most of the lead in both mining districts is derived from the Oligocene-Miocene magmatic rocks, possibly with smaller contributions from the Eocene magmatic rocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号