首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2315篇
  免费   218篇
  国内免费   712篇
测绘学   20篇
大气科学   20篇
地球物理   342篇
地质学   2545篇
海洋学   157篇
天文学   15篇
综合类   50篇
自然地理   96篇
  2024年   6篇
  2023年   14篇
  2022年   27篇
  2021年   46篇
  2020年   84篇
  2019年   103篇
  2018年   55篇
  2017年   174篇
  2016年   124篇
  2015年   159篇
  2014年   196篇
  2013年   216篇
  2012年   151篇
  2011年   186篇
  2010年   188篇
  2009年   210篇
  2008年   144篇
  2007年   201篇
  2006年   194篇
  2005年   128篇
  2004年   94篇
  2003年   114篇
  2002年   76篇
  2001年   52篇
  2000年   56篇
  1999年   49篇
  1998年   48篇
  1997年   37篇
  1996年   24篇
  1995年   20篇
  1994年   6篇
  1993年   22篇
  1992年   17篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   5篇
  1987年   12篇
  1979年   2篇
排序方式: 共有3245条查询结果,搜索用时 140 毫秒
91.
The Beiya deposit, located in the Sanjiang Tethyan tectonic domain (SW China), is the third largest Au deposit in China (323 t Au @ 2.47 g/t). As a porphyry-skarn deposit, Beiya is related to Cenozoic (Himalayan) alkaline porphyries. Abundant Bi-minerals have been recognized from both the porphyry- and skarn- ores, comprising bismuthinite, Bi–Cu sulfosalts (emplectite, wittichenite), Bi–Pb sulfosalts (galenobismutite, cosalite), Bi–Ag sulfosalt (matildite), Bi–Cu–Pb sulfosalts (bismuthinite derivatives), Bi–Pb–Ag sulfosalts (lillianite homologs, galena-matildite series), and Bi chalcogenides (tsumoite, the unnamed Bi2Te, the unnamed Ag4Bi3Te3, tetradymite, and the unnamed (Bi, Pb)3(Te, S)4). Native bismuth and maldonite are also found in the skarn ores. The arsenopyrite geothermometer reveals that the porphyry Au mineralization took place at temperatures in the range of 350–450 °C and at log fS2 in the range of − 8.0 to − 5.5, respectively. In contrast, the Beiya Bi-mineral assemblages indicate that the skarn ore-forming fluids had minimum temperatures of 230–175 °C (prevailing temperatures exceeding 271 °C) and fluctuating fS2fTe2 conditions. We also model a prolonged skarn Au mineralization history at Beiya, including at least two episodes of Bi melts scavenging Au. We thus suggest that this process was among the most effective Au-enrichment mechanisms at Beiya.  相似文献   
92.
新疆东天山地区土屋和延东铜矿床斑岩叠加改造成矿作用   总被引:2,自引:0,他引:2  
土屋和延东铜矿床位于东天山大南湖-头苏泉岛弧带南部,是中亚成矿带的重要组成部分。文章根据脉次穿插关系、蚀变矿物组合及矿物共生关系,将土屋和延东铜矿床均划分为斑岩成矿期、叠加改造期和表生期3个期次。土屋铜矿床的铜矿化形成于斑岩成矿期和叠加改造期,而延东铜矿床的铜矿化主要形成于叠加改造期;土屋和延东铜矿床伴生的钼矿化主要形成于叠加改造期。因此,笔者认为前人获得的辉钼矿Re-Os年龄(326.2~322.7 Ma)代表叠加改造期的成矿年龄,该期矿化与石英钠长斑岩((323.6±2.5)Ma)的侵入相关,而斑岩成矿期的矿化与斜长花岗斑岩(339~332 Ma)相关,成矿年龄为341.2~333.9 Ma。叠加改造期的存在,使得斑岩成矿期的蚀变分带可能受到了叠加和破坏。  相似文献   
93.
皖南晚中生代花岗闪长岩地球化学:成岩成矿制约   总被引:3,自引:2,他引:1  
皖南地区是铜、钼、金多金属成矿区,成矿与晚中生代花岗闪长岩类关系密切。近十年来,皖南花岗闪长岩的成因仍然存在分歧。本次报道了皖南花岗闪长岩全岩主、微量元素和锆石原位元素数据。皖南花岗闪长岩(Si O2=64.3%~70.8%)为高钾钙碱性、过铝质岩石,具有相似的埃达克岩特征:高Si O2、Sr/Y(17.1)和(La/Yb)N(14.9)比值,低Yb(1.72×10-6)和Y(18.4×10-6)含量。它们也具有较低Al2O3和Cr(3.40×10-6~10.0×10-6)含量、低Mg#(0.34~0.42)和Nb/Ta(9.6~13.3)值,高K2O和Ba(404×10-6)含量,高K2O/Na2O(0.89~1.55)、Th/La(0.27~0.51)和Th/U(2.79~7.49)比值。锆石原位地球化学特征显示其岩浆源区为低温(锆石Ti-in-zircon温度均值674℃)和高氧逸度(lgfO2集中在-21.4~-9.18,均值-16.4;锆石Ce4+/Ce3+平均值276)的陆壳。这些特征说明皖南花岗闪长岩可能起源于较年轻的加厚下地壳的部分熔融,并经历了斜长石、钾长石和铁镁矿物等结晶分异作用。它们可能形成于与古太平洋板块俯冲密切相关的大陆活动边缘弧至弧后拉张构造转换背景。本区大规模Cu、Mo、Au成矿作用与岩浆的高氧逸度密切相关,而锆石Ce4+/Ce3+可作为矿床勘探一个有效的指标。  相似文献   
94.
阿尔金南缘清水泉地区与基性-超基性岩伴生的花岗岩为斜长花岗岩。岩石地球化学显示该花岗岩高硅、富铝和钠,低镁和钾;轻稀土富集,具有Eu的正异常(δEu为1.01~2.01)。岩石富Rb、Ba,特别高Sr(779×10-6~864×10-6),低Y(1.17×10-6~1.51×10-6)及Yb(0.15×10-6~0.20×10-6),强烈亏损Nb、Ta等。斜长花岗岩锆石振荡环带清晰,Th/U和Nb/Ta比值分别为0.38~0.52,2.92~5.04;具有明显的Ce正异常和Eu负异常,为典型的岩浆锆石,利用LA-ICP-MS微区原位定年获得该花岗岩206Pb/238U-207Pb/235U谐和年龄为465Ma,206Pb/238U加权平均年龄为451±4Ma。锆石饱和温度计和锆石Ti温度计演算结果显示锆石的结晶温度分别为783~811℃和693~821℃。推测花岗岩源区压力范围为1.8~2.0GPa,形成深度在60km以上。综合分析清水泉花岗岩主、微量元素地球化学特征,并结合区域地质,认为该花岗岩属"I"型花岗岩,由地幔基性岩浆上侵分异形成,产于伸展环境。  相似文献   
95.
Soil secondary minerals are important scavengers of rare earth elements (REEs) in soils and thus affect geochemical behavior and occurrence of REEs. The fractionation of REEs is a common geochemical phenomenon in soils but has received little attention, especially fractionation induced by secondary minerals. In this study, REEs (La to Lu and Y) associated with soil-abundant secondary minerals Fe-, Al-, and Mn-oxides in 196 soil samples were investigated to explore the fractionation and anomalies of REEs related to the minerals. The results show right-inclined chondrite-normalized REE patterns for La–Lu in soils subjected to total soil digestion and partial soil extraction. Light REEs (LREEs) enrichment features were negatively correlated with a Eu anomaly and positively correlated with a Ce anomaly. The fractionation between LREEs and heavy REEs (HREEs) was attributed to the high adsorption affinity of LREEs to secondary minerals and the preferred activation/leaching of HREEs. The substantial fractions of REEs in soils extracted by oxalate and Dithionite-Citrate-Bicarbonate buffer solutions were labile (10 %–30 %), which were similar to the mass fraction of Fe (10 %–20 %). Furthermore, Eu was found to be more mobile than the other REEs in the soils, whereas Ce was less mobile. These results add to our understanding of the distribution and geochemical behavior of REEs in soils, and also help to deduce the conditions of soil formation from REE fractionation.  相似文献   
96.
利用Paterson气体介质高温高压流变仪对纯叶蛇纹岩在100~400MPa围压、25~700℃温度和10-5~1.5×10-6s-1应变速率下进行了三轴压缩变形实验。实验结果表明叶蛇纹石在低压条件下表现为脆性破裂,高压或脱水条件下表现为半脆性破裂。随着温度的增加,叶蛇纹石的强度显示逐渐降低的趋势;尤其在脱水条件下,温度的增加可导致叶蛇纹石强度大幅度地降低,而且此时预热时间对强度的影响比未发生脱水时更加显著。结合前人的研究并对比发现,围压在室温下的增加导致叶蛇纹岩强度增加;但在高温下围压的增加导致试样强度整体上降低,这很可能是试样内聚力的局部损失与韧性增强引起的。围压和温度的升高,以及断层面上流体的增加很可能会增加破裂面的韧性,从而减小摩擦系数。此外,叶蛇纹石并非以往人们所认为的那样具有极低的强度,其强度要比低温蛇纹石(如利蛇纹石和纤蛇纹石)的大得多,即便在高温(大约600℃)下差应力大于约600MPa和中-低温(≤400℃)下差应力大于约1000MPa时仍没有表现出明显屈服的迹象。在脱水条件下,蛇纹岩并没有发生脱水致脆,相反脱水使得试样的断裂行为变得更加温和些。因此,俯冲带蛇纹岩脱水更可能诱发其周围更加脆性的岩石发生地震而不是脱水的蛇纹岩本身发生地震。  相似文献   
97.
The relationship of the Yangtze Block with other continental blocks of the Rodinia and Gondwana supercontinents is hotly debated. Here we report U–Pb and Lu–Hf isotopic data for zircons from the latest Neoproterozoic Yanjing Group and the overlying Silurian–Devonian rocks on the western margin of Yangtze Block, which provide critical constraints on the provenance of these sediments and further shed light on the crustal evolution and tectonic affinity of the western Yangtze Block in the context of Rodinia and the subsequent Gondwanaland. Mica schist from the middle part of the Yanjing Group contains dominant Neoproterozoic detrital zircons (0.72–0.80 Ga) with a pronounced age peak at 0.75 Ga. Based on the euhedral to subhedral shapes, high Th/U ratios and exclusively positive εHf(t) values (+ 6 to + 14) for the zircon crystals, and the lack of ancient zircons, we consider the sediments as products of proximal deposition near a Neoproterozoic subduction system in western Yangtze. Combined with the age of rhyolite from the lower part of the Yanjing Group, these strata were estimated to have been deposited in a period between 0.72 and 0.63 Ga. In contrast, the Silurian–Devonian sediments exhibit dominant Grenvillian ages (0.9–1.0 Ga), with middle Neoproterozoic (0.73–0.85 Ga), Pan-African (0.49–0.67 Ga) and Neoarchean (~ 2.5 Ga) age populations, suggesting a significant change of sedimentary provenance and thus a different tectonic setting. Although the shift occurred in the Silurian, the age spectra turn to be consistent along the western margin of the Yangtze Block until the Devonian, indicating persistence of the same sedimentary environment. However, the related provenance of these Paleozoic sediments cannot be found in South China. The presence of abundant Grenvillian, Pan-African and Neoarchean ages, along with their moderately to highly rounded shapes, indicates the possibility of exotic continental terrane(s) as a possible sedimentary provenance. Considering the potential source areas around the Yangtze Block when it was part of the Rodinia or Gondwana, we suggest that the source of these Paleozoic sediments had typical Gondwana affinities such as the Himalaya region, north India, which is also supported by their stratigraphic similarity, newly published paleomagnetic data and the tectono-thermal events of northwestern fragments of Gondwana. This implies that after a prolonged subduction in the Neoproterozoic, the western margin of the Yangtze Block began to incorporate into the assembly of the Gondwana supercontinent and was able to accept sediments from northwestern margin of Gondwanaland as a result of early Paleozoic orogeny.  相似文献   
98.
We report new zircon U–Pb geochronologic and Hf-isotopic data, and whole-rock major and trace element data, for the Labuco granitoids of the southern margin of the Southern Qiangtang terrane (SQ), Tibet. Five intermediate–felsic samples yielded zircon U–Pb ages of 169–156 Ma, making the Labuco granitoids contemporaneous with Middle–Late Jurassic magmatism in the SQ. The granitoids exhibit a range of zircon εHf(t) values from − 7.3 to − 0.6. The samples from Labuco can be divided into low-Sr/Y granitoids (LSG) and high-Sr/Y granitoids (HSG). The LSG are normal calc-alkaline I-type granitoids, characterized by varying major and trace element contents indicative of partial melting of ancient mafic lower crust. The HSG are characterized by high Sr/Y ratios (64–75), (La/Yb)N (chondrite-normalized) ratios of 57–76, and (Gd/Yb)N ratios of 6.6–8.9. These signatures indicate that the HSG were derived by partial melting of garnet-bearing thickened lower crust. The across-arc variation in magma geochemistry in the SQ was caused by tectonic shortening and crustal thickening, which occurred as a result of the northward subduction of the Bangong–Nujiang Ocean lithosphere during the Middle–Late Jurassic. These results have important implications for our understanding of tectonic shortening, crustal thickening, and the geometry of modern and ancient subduction zones.  相似文献   
99.
The lithospheric structure of ancient cratons provides important constraints on models relating to tectonic evolution and mantle dynamics. Here we present the 3D lithospheric structure of the North China Craton (NCC) from a joint inversion of gravity, geoid and topography data. The NCC records a prolonged history of Archean and Paleoproterozoic accretion of crustal blocks through subduction and collision building the cratonic architecture, which was subsequently differentially destroyed during Mesozoic through extensive magmatism. The thermal structure obtained in our study is considered to define the lithosphere-asthenosphere boundary (LAB) of the NCC, and reflects the density variations within the mantle lithosphere. Employing the Moho depths from deep seismic sounding profiles for the inversion, and based on repeated computations using different parameters, we estimate the Moho depth, LAB depth and average crustal density of the craton. The Moho depth varies from 28 to 50 km and the LAB depth varies from 105 to 205 km. The LAB and Moho show concordant thinning from West to East of the NCC. The average crustal density is 2870 kg m 3 in the western part of the NCC, higher than that in the eastern part (2750 kg m 3). The results of joint inversion in our study yielded LAB depth and lithospheric thinning features similar to those estimated from thermal and seismic studies, although our results show different depth and variations in the thickness. The lithosphere gently thins from 145 to 105 km in the eastern NCC, where as the thinning is much less pronounced in the western NCC with average depth of about 175 km. The joint inversion results in this study provide another perspective on the lithospheric structure from the density properties and corresponding geophysical responses in an ancient craton.  相似文献   
100.
The Yili Block is one of the Precambrian microcontinents dispersed in the Central Asian Orogenic Belt (CAOB). Detrital zircon U–Pb ages and Hf isotopic data of Neoproterozoic meta-sedimentary rocks (the Wenquan Group) are presented to constrain the tectonic affinity and early history of the Yili Block. The dating of detrital zircons indicates that both the lower and upper Wenquan Groups have two major populations with ages at 950–880 Ma and 1600–1370 Ma. Moreover, the upper Wenquan Group has two minor populations at ~ 1100 Ma and 1850–1720 Ma. According to the youngest age peaks of meta-sedimentary rocks and the ages of related granitoids, the lower Wenquan Group is considered to have been deposited during the early Neoproterozoic (900–845 Ma), whereas the upper Wenquan Group was deposited at 880–857 Ma. The zircon εHf (t) values suggest that the 1.85–1.72 Ga source rocks for the upper Wenquan Group were dominated by juvenile crustal material, whereas those for the lower Wenquan Group involved more ancient crustal material. For the 1.60–1.37 Ga source rocks, however, juvenile material was a significant input into both the upper and lower Wenquan Groups. Therefore, two synchronous crustal growth and reworking events were identified in the northern Yili Block at ca. 1.8–1.7 Ga and 1.6–1.3 Ga, respectively. After the last growth and reworking event, continuous crustal reworking took place in the northern Yili Block until the early Neoproterozoic. Comparing the age patterns and Hf isotopic compositions of detrital zircons from the Yili Block and the surrounding tectonic units indicates that the Yili Block has a close tectonic affinity to the Chinese Central Tianshan Block in the Precambrian. The Precambrian crustal evolution of the Yili Block is distinct from that of the Siberian, North China and Tarim Cratons. Such difference therefore suggests that the Yili Block and the Chinese Central Tianshan Block may have been united in an isolated Precambrian microcontinent within the CAOB rather than representing two different blocks rifted from old cratons on both sides of the Paleo-Asian Ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号