首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
  国内免费   1篇
地球物理   15篇
地质学   7篇
海洋学   6篇
综合类   1篇
自然地理   3篇
  2017年   2篇
  2015年   1篇
  2014年   6篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2006年   1篇
  2005年   5篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
11.
We have developed a straightforward and ray based methodology to estimate both the maximum offset and reflection imaging radius for multi‐layered velocity models, which can be used for a 2D/3D VSP survey design. Through numerical examples, we demonstrate that the presence of a high‐velocity layer above a target zone significantly reduces the maximum offset and reflection imaging radius. Our numerical examples also show that including in a migration VSP data acquired beyond a recommended maximum offset, radically degrades the quality of the final VSP image. In addition, unlike the conventional straight‐line based approximation that often produces an incorrect large reflection imaging radius, our methodology predicts the VSP imaging radius with more accuracy than does the conventional approximation.  相似文献   
12.
Comparison of surface and borehole locations of induced seismicity   总被引:1,自引:0,他引:1  
Monitoring of induced microseismic events has become an important tool in hydraulic fracture diagnostics and understanding fractured reservoirs in general. We compare microseismic event and their uncertainties using data sets obtained with surface and downhole arrays of receivers. We first model the uncertainties to understand the effect of different acquisition geometries on location accuracy. For a vertical array of receivers in a single monitoring borehole, we find that the largest part of the final location uncertainty is related to estimation of the backazimuth. This is followed by uncertainty in the vertical position and radial distance from the receivers. For surface monitoring, the largest uncertainty lies in the vertical position due to the use of only a single phase (usually P‐wave) in the estimation of the event location. In surface monitoring results, lateral positions are estimated robustly and are not sensitive to the velocity model. In this case study, we compare event location solutions from two catalogues of microseismic events; one from a downhole array and the second from a surface array of 1C geophone. Our results show that origin time can be reliably used to find matching events between the downhole and surface catalogues. The locations of the corresponding events display a systematic shift consistent with a poorly calibrated velocity model for downhole dataset. For this case study, locations derived from surface monitoring have less scatter in both vertical and horizontal directions.  相似文献   
13.
Wide-azimuth seismic data can be used to derive anisotropic parameters on the subsurface by observing variation in subsurface seismic response along different azimuths. Layer-based high-resolution estimates of components of the subsurface anisotropic elastic tensor can be reconstructed by using wide-azimuth P-wave data by combining the kinematic information derived from anisotropic velocity analysis with dynamic information obtained from amplitude versus angle and azimuth analysis of wide-azimuth seismic data. Interval P-impedance, S-impedance and anisotropic parameters associated with anisotropic fracture media are being reconstructed using linearized analysis assuming horizontal transverse anisotropy symmetry. In this paper it is shown how additional assumptions, such as the rock model, can be used to reduce the degrees of freedom in the estimation problem and recover all five anisotropic parameters. Because the use of a rock model is needed, the derived elastic parameters are consistent with the rock model and are used to infer fractured rock properties using stochastic rock physics inversion. The inversion is based on stochastic rock physics modelling and maximum a posteriori estimate of both porosity and crack density parameters associated with the observed elastic parameters derived from both velocity and amplitude versus angle and azimuth analysis. While the focus of this study is on the use of P-wave reflection data, we also show how additional information such as shear wave splitting and/or anisotropic well log data can reduce the assumptions needed to derive elastic parameter and rock properties.  相似文献   
14.
A platform for Kirchhoff data mapping in scalar models of data acquisition   总被引:1,自引:0,他引:1  
Kirchhoff data mapping (KDM) is a procedure for transforming data from a given input source/receiver configuration and background earth model to data corresponding to a different output source/receiver configuration and background model. The generalization of NMO/DMO, datuming and offset continuation are three examples of KDM applications. This paper describes a 'platform' for KDM for scalar wavefields. The word, platform, indicates that no calculations are carried out in this paper that would adapt the derived formula to any one of a list of KDMs that are presented in the text. Platform formulae are presented in 3D and in 2.5D. For the latter, the validity of the platform equation is verified — within the constraints of high-frequency asymptotics — by applying it to a Kirchhoff approximate representation of the upward scattered data from a single reflector and for an arbitrary source/receiver configuration. The KDM formalism is shown to map this Kirchhoff model data in the input source/receiver configuration to Kirchhoff data in the output source/receiver configuration, with one exception. The method does not map the reflection coefficient. Thus, we verify that, asymptotically, the ray theoretical geometrical spreading effects due to propagation and reflection (including reflector curvature) are mapped by this formalism, consistent with the input and output modelling parameters, while the input reflection coefficient is preserved. In this sense, this is a 'true-amplitude' formalism. As with earlier Kirchhoff inversion, a slight modification of the kernel of KDM provides alternative integral operators for estimating the specular reflection angle, both in the input configuration and in the output configuration, thereby providing a basis for amplitude-versus-angle analysis of the data.  相似文献   
15.
We propose a decision-making approach for optimizing the profitability of hydrocarbon reservoirs. The proposed approach addresses the overwhelming complexity of the overall optimization problem by suggesting an oilfield operations hierarchy that entails different time scales. We discuss system identification, optimization, and control that are appropriate at various levels of the hierarchy and capitalize on the abilities of permanently instrumented and remotely actuated fields. Optimization is performed in real-time and is based on feedback. We provide details on real-time identification of hybrid models and their use at the scheduling and supervisory control levels. Case studies using field-calibrated simulation data demonstrate the applicability and value of the proposed approach. Directions for future development are given.  相似文献   
16.
17.
We develop a methodology to obtain a consistent velocity model from calibration shots or microseismicity observed on a buried array. Using a layered 1D isotropic model derived from checkshots as an initial velocity model, we invert P‐wave arrival times to obtain effective anisotropic parameters with a vertical axis of symmetry (VTI). The nonlinear inversion uses iteration between linearized inversion for anisotropic parameters and origin times or depths, which is specific to microseismic monitoring. We apply this technique to multiple microseismic events from several treatments within a buried array. The joint inversion of selected events shows a largely reduced RMS error indicating that we can obtain robust estimates of anisotropic parameters, however we do not show improved source locations. For joint inversion of multiple microseismic events we obtained Thomsen anisotropic parameters ε of 0.15 and δ of 0.05, which are consistent with values observed in active seismic surveys. These values allow us to locate microseismic events from multiple hydraulic fracture treatments separated across thousands of metres with a single velocity model. As a result, we invert the effective anisotropy for the buried array region and are able to provide a more consistent microseismicity mapping for past and future hydraulic fracture stimulations.  相似文献   
18.
In transversely isotropic media with a vertical symmetry axis (VTI), the converted-wave (C-wave) moveout over intermediate-to-far offsets is determined by four parameters. These are the C-wave stacking velocity V C2, the vertical and effective velocity ratios γ 0and γ eff, and the anisotropic parameter X eff. We refer to the four parameters as the C-wave stacking velocity model. The purpose of C-wave velocity analysis is to determine this stacking velocity model. The C-wave stacking velocity model V C2, γ 0, γ geff, and X eff can be determined from P- and C-wave reflection moveout data. However, error propagation is a severe problem in C-wave reflection-moveout inversion. The current short-spread stacking velocity as deduced from hyperbolic moveout does not provide sufficient accuracy to yield meaningful inverted values for the anisotropic parameters. The non-hyperbolic moveout over intermediate-offsets (x/z from 1.0 to 1.5) is no longer negligible and can be quantified using a background γ. Non-hyperbolic analysis with a γ correction over the intermediate offsets can yield V C2 with errors less than 1% for noise free data. The procedure is very robust, allowing initial guesses of γ with up to 20% errors. It is also applicable for vertically inhomogeneous anisotropic media. This improved accuracy makes it possible to estimate anisotropic parameters using 4C seismic data. Two practical work flows are presented for this purpose: the double-scanning flow and the single-scanning flow. Applications to synthetic and real data show that the two flows yield results with similar accuracy but the single-scanning flow is more efficient than the double-scanning flow. This work is funded by the Edinburgh Anisotropy Project of the British Geological Survey. First Author Li Xiangyang, he is currently a professorial research seismologist (Grade 6) and technical director of the Edinburgh Anisotropy Project in the British Geological Survey. He also holds a honorary professorship multicomponent seismology at the School of Geosciences, University of Edinburgh. He received his BSc(1982) in Geophysics from Changchun Geological Institute, China, an MSc (1984) in applied geophysics from East China Petroleum Institute (now known as the China University of Petroleum), and a PhD (1992) in seismology from the University of Edinburgh. During 1984–1987, he worked as a lecturer with the East China Petroleum Institute. Since 1991, he has been employed by the British Geological Survey. His research interests include seismic anisotropy and multicomponent seismology.  相似文献   
19.
The Early Proterozoic iron formation-slate sequences of the Animikie Group have been analyzed for fatty acids and the results discussed in light of the regional metamorphic history and kerogen H/C and N/C atomic ratios. No fatty acids, free or inorganically bound, were detected. The highest H/C ratios are found in the Gunflint (mean = 0.57) and lowest in the Virginia State (0.19). The lower H/C ratio in the Biwabik (mean = 0.45) is interpreted as a function of higher metamorphic grade in that iron formation. The absence of fatty acids is attributed to dehydrogenation and cyclization of the original material to the present H/C ratio of about 0.5. The Gunflint Iron-Formation, which represents those conditions most likely to preserve chemical fossils in the Animikie Group has already exceeded minimum conditions for fatty acid preservation. Hydrogen to carbon ratios in pelitic rocks are consistently lower than their underlying iron-formation. It is suggested that sulfur and/or clay alter the kinetics of the dehydrogenation reaction, creating lower H/C ratios in the pelites.  相似文献   
20.
This work is based upon results of interpretation of about 8872 km-long regional seismic lines acquired in 2011 within the international project Geology Without Limits in the Black Sea. The seismic lines cover nearly the entire Black Sea Basins, including Russia, Turkey, Ukraine, Romania and Bulgaria sectors. A new map of acoustic basement relief and a new tectonic structure scheme are constructed for the Black Sea Basins. The basement of the Black Sea includes areas with oceanic crust and areas with highly rifted continental crust. A chain of buried seamounts, which were interpreted as submarine volcanoes of Late Cretaceous (Santonian to Campanian) age, has been identified to the north of the Turkish coast. On the Shatsky Ridge, probable volcanoes of Albian age have also been recognized. Synorogenic turbidite sequences of Paleocene, Eocene and Oligocene ages have been mapped. In the Cenozoic, numerous compressional and transpressional structures were formed in different parts of the Black Sea Basin. During the Pleistocene–Quaternary, turbidites, mass-transport deposits and leveed channels were formed in the distal part of the Danube Delta.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号