首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   4篇
  国内免费   8篇
测绘学   1篇
地球物理   8篇
地质学   50篇
海洋学   1篇
自然地理   10篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   7篇
  2018年   3篇
  2017年   4篇
  2015年   7篇
  2014年   10篇
  2013年   3篇
  2012年   4篇
  2011年   5篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  1987年   1篇
排序方式: 共有70条查询结果,搜索用时 31 毫秒
21.
A dropstone‐bearing, Middle Permian to Early Triassic peri‐glacial sedimentary unit was first discovered from the Khangai–Khentei Belt in Mongolia, Central Asian Orogenic Belt. The unit, Urmegtei Formation, is assumed to cover the early Carboniferous Khangai–Khentei accretionary complex, and is an upward‐fining sequence, consisting of conglomerates, sandstones, and varved sandstone and mudstone beds with granite dropstones in ascending order. The formation was cut by a felsic dike, and was deformed and metamorphosed together with the felsic dike. An undeformed porphyritic granite batholith finally cut all the deformed and metamorphosed rocks. LA‐ICP‐MS, U–Pb zircon dating has revealed the following 206Pb/238U weighted mean igneous ages: (i) a granite dropstone in the Urmegtei Formation is 273 ± 5 Ma (Kungurian of Early Permian); (ii) the deformed felsic dike is 247 ± 4 Ma (Olenekian of Early Triassic); and (iii) the undeformed granite batholith is 218 ± 9 Ma (Carnian of Late Triassic). From these data, the age of sedimentation of the Urmegtei Formation is constrained between the Kungurian and the Olenekian (273–247 Ma), and the age of deformation and metamorphism is constrained between the Olenekian and the Carnian (247–218 Ma). In Permian and Triassic times, the global climate was in a warming trend from the Serpukhovian (early Late Carboniferous) to the Kungurian long and severe cool mode (328–271 Ma) to the Roadian to Bajocian (Middle Jurassic) warm mode (271–168 Ma), with an interruption with the Capitanian Kamura cooling event (266–260 Ma). The dropstone‐bearing strata of the Urmegtei Formation, together with the glacier‐related deposits in the Verkhoyansk, Kolyma, and Omolon areas of northeastern Siberia (said to be of Middle to Late Permian age), must be products of the Capitanian cooling event. Although further study is needed, the dropstone‐bearing strata we found can be explained in two ways: (i) the Urmegtei Formation is an autochthonous formation indicating a short‐term expansion of land glacier to the central part of Siberia in Capitanian age; or (ii) the Urmegtei Formation was deposited in or around a limited ice‐covered continent in northeast Siberia in the Capitanian and was displaced to the present position by the Carnian.  相似文献   
22.
Mongolia is located within the Central Asian Orogenic Belt. The belt is consist of numerous tectonic blocks or terranes, which resulted from collisions during the Early Paleozoic (Caledonian orogeny), Late Paleozoic (Hercynian orogeny) and partly in Early Mesozoic (Indosinian orogeny) (Seng?r et al., 1993; Heubeck, 2001; Badarch et al., 2003). These collisions had a profound effect on the coal-bearing sedimentary basins in Carboniferous, Permian, Jurassic and Cretaceous periods of Mongolia. A total of more than 200 coal occurrences and deposits are known, of which about 70 have been explored.  相似文献   
23.
Bioassay methods are used to assess the toxicity of bottom sediments in the main watercourses of the Selenga River basin and Lake Orog in Mongolia. Toxic bottom sediments are found in a brook in the region of the Erdenet Mining and Concentration Complex, as well as in the Eroo and Bukhlyn rivers, which experience the effect of intense gold mining. The conclusion is drawn that the Selenga River water flowing from the territory of Mongolia cannot directly affect the quality of water in Lake Baikal.  相似文献   
24.
Understanding the development of the Central Asian Orogenic System (CAOS), which is the largest Phanerozoic accretionary orogen in the world, is critical to the determination of continental growth mechanisms and geological history of central Asia. A key to unraveling its geological history is to ascertain the origin and tectonic setting of the large flysch complexes that dominate the CAOS. These complexes have been variably interpreted as deep-marine deposits that were accreted onto a long-evolving arc against large continents to form a mega-accretionary complex or sediments trapped in back-arc to fore-arc basins within oceanic island-arc systems far from continents. To differentiate the above models we conducted U–Pb geochronological analyses of detrital-zircon grains from turbidites in the composite Hangay–Hentey basin of central Mongolia. This basin was divided by a Cenozoic fault system into the western and eastern sub-basins: the Hangay Basin in the west and Hentey basin in the east. This study focuses on the Hentey basin and indicates two groups of samples within this basin: (1) a southern group that were deposited after the earliest Carboniferous ( 339 Ma to 354 Ma) and a northern group that were deposited after the Cambrian to Neoproterozoic ( 504 Ma to 605 Ma). The samples from the northern part of the basin consistently contain Paleoproterozoic and Archean zircon grains that may have been derived from the Tuva–Mongol massif and/or the Siberian craton. In contrast, samples from the southern part of the basin contain only a minor component of early Paleozoic to Neoproterozoic zircon grains, which were derived from the crystalline basement bounding the Hangay–Hentey basin. Integrating all the age results from this study, we suggest that the Hangay–Hentey basin was developed between an island-arc system with a Neoproterozoic basement in the south and an Andean continental-margin arc in the north. The initiation of the southern arc occurred at or after the early Carboniferous, allowing accumulation of a flysch complex in a long-evolving accretionary complex.  相似文献   
25.
Late Pleistocene glaciers around Darhad Basin advanced to near their maximum positions at least three times, twice during the Zyrianka glaciation (at ∼ 17-19 ka and ∼ 35-53 ka), and at least once earlier. The Zyrianka glaciers were smaller than their predecessors, but the equilibrium-line altitude (ELA) difference was < 75 m. End moraines of the Zyrianka glaciers were ∼ 1600 m asl; ELAs were 2100-2400 m asl. 14C and luminescence dating of lake sediments confirm the existence of paleolake highstands in Darhad Basin before ∼ 35 ka. Geologic evidence and 10Be cosmic-ray exposure dating of drift suggests that at ∼ 17-19 ka the basin was filled at least briefly by a glacier-dammed lake ∼ 140 m deep. However, lake sediments from that time have not yet been recognized in the region. A shallower paleolake briefly occupied the basin at ∼ 11 ka, but between ∼ 11 and 17 ka and after ∼ 10 ka the basin was probably largely dry. The timing of maximum glacier advances in Darhad appears to be approximately synchronous across northern Mongolia, but different from Siberia and western Central Asia, supporting the inference that paleoclimate in Central Asia differed among regions.  相似文献   
26.
Environmental reconnaissance of the Shivee-Ovoo coalmine area, Mongolia   总被引:1,自引:1,他引:0  
An exploratory investigation was conducted to assess the present conditions and evaluate the potential impacts of mining activities on soil and water environments at the Shivee-Ovoo coalmine area in Mongolia. Water quality analysis was conducted on samples from mine dewatering boreholes, a tailings dam, and drinking water sources around the mine area. In drinking water supplies of the area, concentrations of Mg, Fe, and F exceeded the levels set in Mongolian and World Health Organization guidelines. Water type and the principal components analysis indicated that water from the mine area and from public water-supply wells originated from the same aquifer. However, the water quality differed in shallow wells and deep wells because of bedrock differences and geochemical weathering processes, rather than climate effects such as from evaporation. The discharged water poses medium to high salinity hazard for use in irrigation, suggesting the need to manage its use in sustainable agriculture or projects to prevent desertification. The particle size distribution and fractal dimension values of soils revealed the dominance of fine to medium sands, which have strong potential for desertification. X-ray photoelectron spectroscopy analysis showed that the soils currently pose no apparent threat for acid rock drainage. Consequently, the open-pit mining of the study area shows no obvious environmental impact at present in its vicinity. However, for sustainable development and expansion of the mine, environmental changes should be continuously monitored, with consideration of possible measures for waste recycling.  相似文献   
27.
Mineral assemblages, chemical compositions of ore minerals, wall rock alteration and fluid inclusions of the Gatsuurt gold deposit in the North Khentei gold belt of Mongolia were investigated to characterize the gold mineralization, and to clarify the genetic processes of the ore minerals. The gold mineralization of the deposit occurs in separate Central and Main zones, and is characterized by three ore types: (i) low‐grade disseminated and stockwork ores; (ii) moderate‐grade quartz vein ores; and (iii) high‐grade silicified ores, with average Au contents of approximately 1, 3 and 5 g t?1 Au, respectively. The Au‐rich quartz vein and silicified ore mineralization is surrounded by, or is included within, the disseminated and stockwork Au‐mineralization region. The main ore minerals are pyrite (pyrite‐I and pyrite‐II) and arsenopyrite (arsenopyrite‐I and arsenopyrite‐II). Moderate amounts of galena, tetrahedrite‐tennantite, sphalerite and chalcopyrite, and minor jamesonite, bournonite, boulangerite, geocronite, scheelite, geerite, native gold and zircon are associated. Abundances and grain sizes of the ore minerals are variable in ores with different host rocks. Small grains of native gold occur as fillings or at grain boundaries of pyrite, arsenopyrite, sphalerite, galena and tetrahedrite in the disseminated and stockwork ores and silicified ores, whereas visible native gold of variable size occurs in the quartz vein ores. The ore mineralization is associated with sericitic and siliceous alteration. The disseminated and stockwork mineralization is composed of four distinct stages characterized by crystallization of (i) pyrite‐I + arsenopyrite‐I, (ii) pyrite‐II + arsenopyrite‐II, (iii) galena + tetrahedrite + sphalerite + chalcopyrite + jamesonite + bournonite + scheelite, and iv) boulangerite + native gold, respectively. In the quartz vein ores, four crystallization stages are also recognized: (i) pyrite‐I, (ii) pyrite‐II + arsenopyrite + galena + Ag‐rich tetrahedrite‐tennantite + sphalerite + chalcopyrite + bournonite, (iii) geocronite + geerite + native gold, and (iv) native gold. Two mineralization stages in the silicified ores are characterized by (i) pyrite + arsenopyrite + tetrahedrite + chalcopyrite, and (ii) galena + sphalerite + native gold. Quartz in the disseminated and stockwork ores of the Main zone contains CO2‐rich, halite‐bearing aqueous fluid inclusions with homogenization temperatures ranging from 194 to 327°C, whereas quartz in the disseminated and stockwork ores of the Central zone contains CO2‐rich and aqueous fluid inclusions with homogenization temperatures ranging from 254 to 355°C. The textures of the ores, the mineral assemblages present, the mineralization sequences and the fluid inclusion data are consistent with orogenic classification for the Gatsuurt deposit.  相似文献   
28.
Garnet-bearing mantle xenoliths have been recovered from Quaternary alkali basalts, both within and peripheral to the Hangay dome of central Mongolia. Microfabric analysis and thermobaromery, combining empirical thermobarometers and the self-consistent dataset of THERMOCALC, indicate that garnet websterites from the Shavaryn-Tsaram volcanic centre at the dome core were formed in the spinel-lherzolite upper mantle at pressures of 17–18 kbars and temperatures of 1,070–1,090°C, whereas garnet lherzolites were derived from greater depths (18–20 kbars). Garnet lherzolites from the Baga Togo Uul vents near the dome edge were formed at 18–22 kbars under significantly cooler conditions (960–1,000°C). These xenoliths reveal reaction coronas of (1) orthopyroxene, clinopyroxene, plagioclase and spinel mantling garnets; (2) spongy rims of olivine replacing orthopyroxene and (3) low-Na, low-Al clinopyroxene replacing primary clinopyroxene. Trace-element abundances indicate that clinopyroxene from these coronas is in chemical equilibrium with the host magma. The thermobarometric and textural data suggest that lherzolite xenoliths from both sites were derived from depths of 60–70 km and entrained in magma at 1,200–1,300°C. The average rate of ascent, as determined by olivine zoning, lies in the range 0.2–0.3 m s−1. The contrast in thermal profiles of the upper mantle between the two sites is consistent with a mantle plume beneath the Hangay dome with elevated thermal conditions beneath the core of the dome being comparable to estimates of the Pleistocene geotherm beneath the Baikal rift.  相似文献   
29.
This paper uses Landsat TM images, GIS technology, Digital Elevation and Habitat Assessment Models to assess the habitat suitability of the endangered plant Tetraena mongolica in western Ordos Plateau of China by selecting terrain, soil, climate, and human activity factors as assessment indices. The results are as follows: natural factors such as climate and terrain are not restrictive factors for the survival and development of T. mongolica in the research region, whereas human activity causes habitat quality of T. mongolica to change intensively in quantity and distribution. The area of less suitable habitat increased by 23.87 km2 compared to potential habitat suitability. Thus, in some areas, human activity may be a key factor causing the endangerment of T. mongolica. There were obvious differences of potential and practical habitat suitability between different habitat regions in the study area. The habitat quality was better in Wujiamiao, Dishan and Qipanjing regions, and worse in Wuda and Qianlishan regions.  相似文献   
30.
The Uneged Uul structure is a ∼10 km circular, complex, multi-ridged domal feature in the Unegt subbasin of the East Gobi Basin, southeastern Mongolia. As revealed by remote sensing and recent field reconnaissance, the central part of the Uneged Uul structure comprises a complex central peak of outward-radiating curved ridges, composed of stratigraphically uplifted greenschist-facies basement schists, surrounded by an annular moat. The most prominent feature of the structure is a central annular ridge ∼3 km in diameter composed of pebble-boulder conglomerates and gravels of the Upper Jurassic Sharilyn Formation, surrounded by three outer domal ridges composed of Lower Cretaceous conglomeratic sandstones and gypsum clays. Jurassic conglomerates forming the main part of the central annular ridge show effects of severe internal deformation. The original population of pebbles, cobbles and boulders appears moderately displaced and mostly broken but nowhere aligned along shear planes or foliated. Primary sedimentary features, such as cross-lamination or imbrication, have been obliterated. We explain this penetrative brecciation as a result of dissipative shearing caused by a strong and rapid singular event that in magnitude was beyond the range of the common crustal tectonics recorded elsewhere in this region. Disrupted and chaotically distributed conglomeratic sandstone beds in the central annular ridge dip in highly variable directions on a local scale but show an apparent SE-NW trend of bedding plane alignment. Further outside, the tilted and uplifted Upper Jurassic to Lower Cretaceous strata of the domal area are overlain by the flat-lying Upper Cretaceous, which stratigraphically constrains the timing of deformation at the Uneged Uul structure to most likely the Early Cretaceous. Endogenic formation models, such as magmatism and salt, gypsum, or mud diapirism, fail to explain the nature of the Uneged Uul structure. The Uneged Uul structure bears a set of geomorphic and structural features resembling those at some eroded complex impact structures on Earth. Morphologically similar central peaks are observed at the Spider and Matt Wilson impact structures in Australia; the central annular ridge reminds of that at Gosses Bluff in Australia; the outer domal ridges might correspond to ring-like features as known from Tin Bider in Algeria. We, therefore, cautiously propose that an impact may have produced the Uneged Uul feature causing structural uplift (∼1000 m) of basement rocks at its center. So far, no convincing evidence for shock metamorphism could be proven by field work and petrographic analyses. However, it is likely that at the time of the deformation event the unconsolidated conglomerates were highly porous and possibly immersed in groundwater buffering the propagation of sudden stress-reducing deformation. Further studies will be in order to unravel the nature of the Uneged Uul structure, which should be considered a promising possible impact structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号