首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2380篇
  免费   261篇
  国内免费   1170篇
测绘学   14篇
大气科学   2篇
地球物理   175篇
地质学   3433篇
海洋学   112篇
天文学   7篇
综合类   35篇
自然地理   33篇
  2024年   23篇
  2023年   78篇
  2022年   123篇
  2021年   131篇
  2020年   202篇
  2019年   226篇
  2018年   172篇
  2017年   394篇
  2016年   396篇
  2015年   306篇
  2014年   311篇
  2013年   308篇
  2012年   208篇
  2011年   228篇
  2010年   136篇
  2009年   94篇
  2008年   69篇
  2007年   99篇
  2006年   90篇
  2005年   39篇
  2004年   11篇
  2003年   30篇
  2002年   24篇
  2001年   20篇
  2000年   22篇
  1999年   41篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有3811条查询结果,搜索用时 31 毫秒
961.
Helicopter-borne frequency-domain electromagnetic (HEM) surveys are used for fast high-resolution, three-dimensional resistivity mapping. Standard interpretation tools are often based on layered earth inversion procedures which, in general, explain the HEM data sufficiently. As a HEM system is moved while measuring, noise on the data is a common problem. Generally, noisy data will be smoothed prior to inversion using appropriate low-pass filters and consequently information may be lost.For the first time the laterally constrained inversion (LCI) technique has been applied to HEM data combined with the automatic generation of dynamic starting models. The latter is important because it takes the penetration depth of the electromagnetic fields, which can heavily vary in survey areas with different geological settings, into account. The LCI technique, which has been applied to diverse airborne and ground geophysical data sets, has proven to be able to improve the HEM inversion results of layered earth structures. Although single-site 1-D inversion is generally faster and — in case of strong lateral resistivity variations — more flexible, LCI produces resistivity — depth sections which are nearly identical to those derived from noise-free data.The LCI results are compared with standard single-site Marquardt–Levenberg inversion procedures on the basis of synthetic data as well as field data. The model chosen for the generation of synthetic data represents a layered earth structure having an inhomogeneous top layer in order to study the influence of shallow resistivity variations on the resolution of deep horizontal conductors in one-dimensional inversion results. The field data example comprises a wide resistivity range in a sedimentary as well as hard-rock environment.If a sufficient resistivity contrast between air and subsurface exists, the LCI technique is also very useful in correcting for incorrect system altitude measurements by using the altitude as a constrained inversion parameter.  相似文献   
962.
The Dashuang complex in Zhejiang Province of southeast China is composed of two distinct lithologies: syenite in the west and quartz monzonite in the east. They record similar zircon U–Pb ages of 224 ± 3 Ma (syenite), and 226 ± 2 Ma and 227 ± 1 Ma (quartz monzonite), respectively, but are notably different in petrography, magnetic susceptibility, whole-rock chemistry, zircon Hf isotope and zircon trace element characteristics. The west Dashuang syenitic pluton (the west body) has high modal alkali feldspar, high zircon saturation temperatures, high whole-rock and zircon MREE/HREE ratios, low Fe–Mg–Ti contents, and is depleted in Ba, Sr and Eu. It also has low magnetic susceptibilities, belongs to the ilmenite-series, and is a peraluminous and ferroan granitoid. The east Dashuang quartz monzonitic pluton (the east body) has abundant K-feldspar megacrysts, with hornblende, titanite and biotite being the major ferromagnesian minerals. In contrast to the west body, the east body has lower zircon saturation temperatures, lower whole-rock and zircon MREE/HREE ratios, higher Fe–Mg–Ti contents, and shows no depletion in Ba, Sr or Eu. The east body has higher magnetite contents, high magnetic susceptibilities and belongs to the magnetite-series. It is a metaluminous and magnesian granitoid of arc-affinity. Zircon Hf isotopic data reveal that both bodies were derived from partial melting of Paleoproterozoic igneous protoliths in the lower crust, but the east body possibly incorporated subducted terrigenous sediments. Both bodies have higher melting temperatures and pressures than adjacent Cretaceous granitoids, reflecting their origin in a thickened, hotter lower crust. The most feasible model to explain their differences is variations in water content during crustal melting, resulting in different melting and crystallization behaviors. Such melting in a Triassic thickened crust with variable water involvement, followed by Cretaceous magmatism in an extensional setting, is consistent with the flat-slab subduction model proposed for South China. The model involves crustal thickening and partial melting, with mantle and lower crustal metasomatism during flat-slab propagation in the Triassic–Early Jurassic, and crustal thinning and extension from the mid-Jurassic to the Cretaceous.  相似文献   
963.
Lincang granite is a batholith located in the Sanjiang region and is an important research subject for understanding subduction and collision during the Paleo-Tethyan period. It is widely exposed in the Lincang Terrane and extends south into Burma. Based on various petrological and geochemical investigations performed from south to north across the Lincang granite, a new set of data, which includes zircon chronological and Hf isotopic data, is presented to discuss the origin of the Lincang granite and its tectonic significance. The Lincang granite is a peraluminous, high-K calc-alkaline body with sub-parallel REE patterns and a strong negative Eu anomaly. This anomaly is characteristic of a post-collision peraluminous S-type granitic batholith. The 200–230 Ma formation age of the Lincang granite was determined using LA-ICP-MS zircon U–Pb dating. Thus, it has been confirmed that the granite formed during the late Triassic period, and the formation process lasted for approximately 30 Ma. Geochemical and isotopic compositions indicate that the primary magma of Lincang granite most likely originated from a crustal source, and possibly underwent an assimilation–fractionation crystallization (AFC) process during its emplacement. The Lincang granite formed during the continental collision between the Baoshan–Gengma Terrane and the Lanping–Simao Terrane after the northeast subduction of the Paleo-Tethyan Oceanic Plate. Therefore, the late Triassic Lincang granite is important evidence for the closure of the Paleo-Tethyan Ocean.  相似文献   
964.
Based on petrographical data, three types of greisen have been characterized at the western border of Água Boa pluton: siderophyllite–topaz–quartz greisen (greisen 1), fluorite–phengite–quartz greisen (greisen 2) and quartz–chlorite–phengite greisen (greisen 3). Episyenites were also identified.Two fluids of independent origin interacted with the same protolith – a hornblende-biotite alkali feldspar granite – and produced both the greisens and potassic episyenite: (1) an acid, low-salinity (4–12 wt.% NaCl eq.), F-rich, relatively hot (400–350 °C) reduced aqueous-carbonic fluid (CH4–H2O–NaCl–FeCl2 ± KCl), which by immiscibility gave rise to fluid IA (aqueous) and IC (carbonic); and (2) a lower salinity (2–4 wt.% NaCl eq.) and temperature (200–150 °C) aqueous fluid (H2O–NaCl), which was responsible for all dilution processes. Fluid 1 seems to have had a magmatic-hydrothermal origin, while fluid 2 is probably surface-derived (meteoric water?). An alkaline, F-poorer and diluted equivalent of fluid IA was interpreted to have caused the episyenitization of the granite host rock as well as the formation of phengite-rich greisen 3. The continuos interaction of this fluid with the potassic episyenite produced a moderate- to high-salinity (20–24 wt.% NaCl eq.), low-temperature (200–100 °C) fluid (H2O–NaCl–CaCl2 ± KCl), leading to the formation of chlorite-rich zone of greisen 3 and late silicification of potassic episyenite.In the greisen 1, decreasing F-activity and increasing oxygen fugacity, as the system cooled down, favored the formation of a topaz-rich inner zone, which grades into a siderophyllite-rich zone outwardly. Greisen 2 was formed under more oxidizing conditions by fluids poorer in F than those trapped in the siderophyllite-rich zone.The oxidation of aqueous-carbonic fluid took place at three distinct stages: (i) below the FMQ buffer; (ii) between the FMQ and NNO buffers; and (iii) above the NNO buffer.The dissolution cavities generated during the episyenitization process increased the permeability of the altered rocks, resulting in an increase of the fluid/rock ratios at the potassic episyenite and greisen 3 sites.All these fluids were trapped under pressure conditions of <1.0 kbar, representing shallow crustal levels and are consistent with those that have been estimated for the Pitinga tin–granites.The oxygen fugacity, F-activity gradients and salinity variations that occurred during the cooling of the hydrothermal system, in addition to differences in permeability, were important factors in the formation of distinct greisens. They not only controlled the fluid compositional changes, but also caused the cassiterite and sulfide precipitation at the greisen sites.  相似文献   
965.
A new 3D geological model and interpretation of structural evolution of the Rio Tinto world-class VMS deposit are presented in this work. The Rio Tinto volcanogenic massive sulfide (VMS) deposit is located in the Spanish segment of the Iberian Pyrite Belt and is hosted by felsic porphyritic volcanic rocks and tuffs. Computer generated 3D modeling of the different orebodies and host rocks has been carried out using data from around 3000 drill-core logs, allowing us to build 93 cross-sections and 6 plants (both 50 m spacing). This has enabled us to recognize the geometry and relationships between the mineralization and the earliest Carboniferous transtensional tectonics through the development of an extensional pull-apart basin with two sub-basins separated by the NW-SE trending Eduardo Fault. The sub-basins, Cerro Colorado and San Dionisio, were limited by two E-W strike-slip faults, the Northern and Southern faults, and bounded in the east and west by the NW-SE-trending Nerva and Western faults, respectively. The generated pull-apart basin was first filled by a basaltic magmatism of mantle origin and later, following the deposition of the intermediate complex sedimentary unit, by rhyodacitic volcanic rocks of crustal origin. The evolution of the subsiding basins caused the development of an E-W oriented rollover anticline that affected these filling rocks.As a result of a counterclockwise rotation of the stress axes, the primitive pull-apart basin evolved into a basin affected by E-W transtensional sinistral shearing. Its northern and southern limits were favorable areas for increased hydrothermal fluid flow, which gave way to the huge concentration of VMS mineralization located near the limits. The Northern and, to a lesser degree, the Southern extensional faults thus become channel areas for feeding and discharging of the VMS and stockwork ores. The main mineralizing period was related to this stage. Subsequently, during the Variscan transpressional phase, the E-W extensional faults were reactivated as inverse faults, affecting the volcanic sequence of mafic to felsic composition and the intermediate complex sedimentary unit. Fault propagation folds developed above these faults, affecting the massive sulfides, the transition series and the Culm flysch sediments, with buttressing playing a significant role in the geometry of tectonically inverted structures. The VMS mineralization and cupriferous stockworks were folded and dismembered from the original conduits in the volcanic series, and a dextral reactivation of the NW-SE trending faults also developed.Finally, it should be emphasized that this new 3D geological model is an approach to provide a better insight into the 3D structure of the world-class VMS Rio Tinto deposit and could be a key-point for further studies providing a new tool to increase knowledge of the VMS mineralizations and exploration guidelines elsewhere in the IPB.  相似文献   
966.
The Hamisana shear zone (HSZ), is an excellent example of high strain shear belt of the Neoproterozoic Arabian–Nubian Shield (ANS), situated in a position between three major Pan-African terranes (SE Desert, Gabgaba, and Gebeit terranes). The north Hamisana shear zone area (NHSZ), cuts across sequences of island arc-related metasediment-metavolcanic, which are structurally overlain by ophiolitic nappes and intruded by a number of granitoids and gabbroic rocks. Although it is interesting geological-tectonic setting for base metal sulfide and gold ores, there is a lack of detailed studies on structure, geology and mineralization in this area, which considered as poorly mapped remote region not only in Egypt but also in Sudan.For these reasons, we integrated image transformation methods include; Principal Components Analysis (PCA), Band Ratios (BR), False-Color Composite (FCC) and filtering on the spectral bands of two distinct datasets ETM + and ASTER for detailed mapping of the NHSZ area. Spectral data fusion with structural data analysis and field observations provide a better understand of the temporal and spatial relationships between the litho-tectonic units and regional tectonic setting in the course of controls on base-metal sulfide and associated gold mineralization. Merging these different data sources in the study area suggests that, the base-metal sulfide and associated gold mineralization are restricted to quartzites, (member of island arc-related metasediments), and mostly controlled by D3 deformational event (main HSZ deformational event). This event characterized by transpressional stress regime, with σ1 trending E–W and σ3 trending N–S, activated conjugate NNW sinistral and NNE–SSW dextral strike-slip faulting, likely during syn-tectonic granodiorite emplacement.  相似文献   
967.
Structural and 40Ar/39Ar data from the mylonitic rocks of the North Dabashan zone (NDZ) document kinematic and tectonothermal characteristics of the Mesozoic collisional and intra-continental orogenesis in the southern part of the Qinling orogenic belt. The NDZ underwent two deformational phases during the Mesozoic period. The earlier one is characterized by top-to-the-SW thrust ductile shearing along a NW-trending shear zone (DSZ-1), while the later one is featured by dextral strike-slip ductile shearing along another NNW-trending shear zone (DSZ-2). The timing of the two deformation events have been constrained to be 245–189 Ma and 178–143 Ma respectively, by using mica 40Ar/39Ar geochronology. It is proposed that the earlier deformation event was associated with the Middle Triassic–Early Jurassic collision between the North and South China Blocks, which generated the initial framework of the NDZ; and the later one was related to the Middle Jurassic to Early Cretaceous intra-continental orogeny in East Asia, which caused a significant eastward extrusion of the South Qinling and led to the formation of the SW-convex Dabashan foreland orocline. The distinguishing between these two deformation events sheds a new insight into the Mesozoic tectonic evolution of the Qinling orogenic belt.  相似文献   
968.
Over 70 new Nd isotope analyses are presented for the Manicouagan area of the Grenville Province to estimate the crustal age of target rocks involved in the 214 Ma Manicouagan Impact Structure, and to reconstruct the Precambrian geological evolution of this crustal segment. The rocks fall into two main groups: Samples from the Archean-aged Gagnon Terrane to the north and west of the impact give TDM ages averaging 2.70 Ga. Samples from the Manicouagan Imbricate Zone (MIZ) and other allochthonous lithotectonic domains to the south of the impact yield Paleoproterozoic TDM ages averaging 2.01 Ga for the MIZ and 1.86 Ga for the southern domains. These Paleoproterozoic terranes are correlated with Makkovik-age crust in Labrador that was heavily reworked by Labradorian magmatism that increased in intensity southwards. The target rocks involved in the impact event would have consisted almost entirely of the MIZ, which formed a layer several kilometres thick, overlying Archean crust at depth.  相似文献   
969.
970.
In 1929, the famous Swedish palaeontologist Carl Wiman documented the first unequivocal stegosaurian dinosaur fossils from Asia. His material comprised an isolated dermal spine, together with a dorsal vertebra that was briefly described but never figured. Since then these remains have languished in obscurity, being noted in some stegosaur review articles but often ignored altogether. However, recent auditing of the Museum of Evolution palaeontological collection at Uppsala University in Sweden has led to the rediscovery of Wiman's original specimens, as well as two additional previously unrecognised stegosaurian dorsal vertebrae. All of these bones derive from the Lower Cretaceous (Berriasian–Valanginian) Mengyin Formation of Shandong Province in eastern China, and are morphologically compatible with the stratigraphically proximal stegosaurian taxon Wuerhosaurus from the Valanginian–Albian Tugulu Group in the Xinjiang Uyghur Autonomous Region of Western China. Wiman's seminal stegosaurian fossils thus expand current palaeobiogeographical distributions, and contribute to the otherwise enigmatic record of Early Cretaceous stegosaurian occurrences globally.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号