首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11701篇
  免费   2244篇
  国内免费   3019篇
测绘学   719篇
大气科学   263篇
地球物理   2074篇
地质学   11962篇
海洋学   840篇
天文学   97篇
综合类   320篇
自然地理   689篇
  2024年   74篇
  2023年   319篇
  2022年   656篇
  2021年   681篇
  2020年   805篇
  2019年   894篇
  2018年   799篇
  2017年   1277篇
  2016年   1167篇
  2015年   1202篇
  2014年   1163篇
  2013年   1317篇
  2012年   1166篇
  2011年   1045篇
  2010年   627篇
  2009年   764篇
  2008年   436篇
  2007年   655篇
  2006年   537篇
  2005年   321篇
  2004年   157篇
  2003年   167篇
  2002年   135篇
  2001年   106篇
  2000年   95篇
  1999年   189篇
  1998年   43篇
  1997年   20篇
  1996年   17篇
  1995年   11篇
  1994年   12篇
  1993年   11篇
  1992年   10篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   42篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1958年   9篇
  1957年   3篇
  1954年   12篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
合龙钨矿床位于南岭东西向构造岩浆带与北-北东向于山构造带交汇部位,是南岭东段于都-赣县矿集区的重要组成。合龙钨矿床是赣南地区近年在石英脉型钨矿勘查取得最重要突破的矿区,新发现钨多金属矿体达48条,新探明黑钨矿资源量3.5万余吨,WO_3平均品位2.189%,深部具有大型以上资源潜力。合龙钨矿床以外带石英大脉型矿体与岩体内石英细脉-云英岩型钨矿体分带共生为特色,区别于经典的石英脉型钨矿床的"五层楼"分带,也不同于"西华山式"仅岩体内成矿和"盘古山式"的仅岩体外成矿,故对其开展成岩成矿时差研究、内外带成矿过程对比研究和成矿模式研究具有重要意义。本文在矿床地质工作基础之上,对该矿床进行了较详细的矿物学研究,对比了不同阶段、不同分带黑钨矿和白钨矿的矿物化学特征;应用LA-ICP-MS锆石U-Pb法获得深部隐伏中细粒斑状黑云母花岗岩的成岩年龄为159.0Ma;应用辉钼矿Re-Os等时线法,测定了内带石英脉-云英岩型矿体成矿时代为157.3Ma,外带石英脉型矿体成矿时代为159.6Ma。研究表明,合龙钨矿床形成于燕山早期,是华南东部中生代大规模花岗质岩浆活动与钨多金属成矿作用的产物,其成矿作用紧随花岗质岩浆侵入而发生,成岩与成矿时间基本一致。内脉带矿化略晚于外脉带钨矿化,外脉带黑钨矿以相对高温阶段形成的含锰钨铁矿为主,内脉带黑钨矿则以成矿作用中晚期的含铁钨锰矿为主。基于上述研究成果,本文建立了"合龙式"钨矿床成矿模式,对石英脉-云英岩型钨矿成矿理论研究具有一定的推动作用,对下一步勘查工作部署具有重要实践意义。  相似文献   
82.
王欢  马冰  贾凌霄  于洋  胡嘉修  王为 《中国地质》2021,48(6):1720-1733
在"碳中和"目标的驱动下,全球能源系统向清洁化、低碳化甚至无碳化发展已是大势所趋。针对向清洁能源转型的需求,采用了统计对比、分类汇总、综合分析等方法,分析研究了关键矿产在电池、电网、低碳发电和氢能等行业中的作用和需求。结合当前关键矿产产量的地理集中度高、项目开发周期长、资源质量下降等矿产供应和投资计划不能满足清洁能源转型的需求等问题,提出确保关键矿产多样性供应,推动价值链各环节的技术创新,扩大回收利用,增强供应链弹性和市场透明度,将更高的环境、社会和治理标准纳入主流程及加强生产者和消费者之间的国际合作等建议。  相似文献   
83.
We present a detailed study of the co-diagenesis of Fe and P in hydrothermal plume fallout sediments from ∼19°S on the southern East Pacific Rise. Three distal sediment cores from 340-1130 km from the ridge crest, collected during DSDP Leg 92, were analysed for solid phase Fe and P associations using sequential chemical extraction techniques. The sediments at all sites are enriched in hydrothermal Fe (oxyhydr)oxides, but during diagenesis a large proportion of the primary ferrihydrite precipitates are transformed to the more stable mineral form of goethite and to a lesser extent to clay minerals, resulting in the release to solution of scavenged P. However, a significant proportion of this P is retained within the sediment, by incorporation into secondary goethite, by precipitation as authigenic apatite, and by readsorption to Fe (oxyhydr)oxides. Molar P/Fe ratios for these sediments are significantly lower than those measured in plume particles from more northern localities along the southern East Pacific Rise, and show a distinct downcore decrease to a depth of ∼12 m. Molar P/Fe ratios are then relatively constant to a depth of ∼35 m. The Fe and P speciation data indicate that diagenetic modification of the sediments is largely complete by a depth of 2.5 m, and thus depth trends in molar P/Fe ratios can not solely be explained by losses of P from the sediment by diffusion to the overlying water column during early diagenesis. Instead, these sediments are likely recording changes in dissolved P concentrations off the SEPR, possibly as a result of redistribution of nutrients in response to changes in oceanic circulation over the last 10 million years. Furthermore, the relatively low molar P/Fe ratios observed throughout these sediments are not necessarily solely due to losses of scavenged P by diffusion to the overlying water column during diagenesis, but may also reflect post-depositional oxidation of pyrite originating from the volatile-rich vents of the southern East Pacific Rise. This study suggests that the molar P/Fe ratio of oxic Fe-rich sediments may serve as a proxy of relative changes in paleoseawater phosphate concentrations, particularly if Fe sulfide minerals are not an important component during transport and deposition.  相似文献   
84.
A combined study of internal structure, U-Pb age, and Hf and O isotopes was carried out for metamorphic zircons from ultrahigh-pressure eclogite boudins enclosed in marbles from the Dabie orogen in China. CL imaging identifies two types of zircon that are metamorphically new growth and recrystallized domain, respectively. The metamorphic zircons have low Th and U contents with low Th/U ratios, yielding two groups of 206Pb/238U age at 245 ± 3 to 240 ± 2 Ma and 226 ± 4 to 223 ± 2 Ma, respectively. Anomalously high δ18O values were obtained for refractory minerals, with 9.9 to 21.4‰ for garnet and 16.9‰ for zircon. This indicates that eclogite protolith is sedimentary rocks capable of liberating aqueous fluid for zircon growth during continental subduction-zone metamorphism. Most of the zircons are characterized by very low 176Lu/177Hf ratios of 0.000001-0.000028, indicating their growth in association with garnet recrystallization. A few of them falling within the older age group have comparatively high 176Lu/177Hf ratios of 0.000192-0.000383, suggesting their growth prior to the formation of garnet in the late stage of subduction. The variations in the Lu/Hf ratios for zircons can thus be used to correlate with garnet growth during eclogite-facies metamorphism. In either case, the zircons have variable εHf (t) values for individual samples, suggesting that their protolith is heterogeneous in Hf isotope composition with localized fluid availability in the bulk processes of orogenic cycle. Nevertheless, a positive correlation exists between 206Pb/238U ages and Lu-Hf isotope ratios for the metamorphically recrystallized zircons, suggesting that eclogite-facies metamorphism in the presence of fluid has the identical effect on zircon Lu-Hf and U-Th-Pb isotopic systems. We conclude that the zircons of the older group grew in the presence of fluid during the subduction prior to the onset of peak ultrahigh-pressure metamorphism, whereas the younger zircons grew in the presence of fluid released during the initial exhumation toward high-pressure eclogite-facies regime.  相似文献   
85.
Analysis of river, estuary and marine sediments from the Atlantic coast of Spain using thermogravimetry–differential scanning calorimetry–quadrupole mass spectrometry–isotope ratio mass spectrometry (TG–DSC–QMS–IRMS) was used to (a) distinguish bulk chemical hosts for C within a sediment and humic acid fraction, (b) track C pools with differing natural C isotope ratios and (c) observe variation with distance from the coast. This is the first application of such a novel method to the characterisation of organic matter from marine sediments and their corresponding humic acid fractions. Using thermal analysis, a labile, a recalcitrant and a refractory carbon pool can be distinguished. Extracted humic fractions are mainly of recalcitrant nature. The proportion of refractory carbon is greatest in marine sediments and humic acid fractions. Quadrupole mass spectrometry confirmed that the greatest proportion of m/z 44 (CO2) and m/z 18 (H2O) were detected at temperatures associated with recalcitrant carbon (510–540 °C). Isotope analysis detected progressive enrichment in δ13C for the sediment samples with an increase in marine influence. Isotopic heterogeneity in the refractory organic matter in marine sediments could be due to products of anthropogenic origin or natural combustion products. Isotope homogeneity of humic acids confirms the presence of terrigenous C in marine sediments, allowing the terrestrial input to be characterised.  相似文献   
86.
《Chemical Geology》2006,225(3-4):336-346
We present results of high temperature, high pressure atomistic simulations aimed at determining the thermodynamic mixing properties of key binary garnet solid solutions. Computations cover the pressure range 0–15 GPa and the temperature range 0–2000 K. Through a combination of Monte-Carlo and lattice-dynamics calculations, we derive thermodynamic mixing properties for garnets with compositions along the pyrope–almandine and pyrope–grossular joins, and compare these with existing experimental data. Across the pressure–temperature range considered, simulations show virtually ideal mixing behaviour in garnet on the pyrope–almandine join, while large excess volumes and enthalpies of mixing are predicted for garnet along the pyrope–grossular join. Excess heat capacities and entropies are also examined. These simulations shed additional light on the link between the behaviour at the atomic level and macroscopic thermodynamic properties: we illustrate the importance of certain atomistic Ca–Mg contacts in the pyrope–grossular solid solutions. For simulation techniques of this type to become sufficiently accurate for direct use in geological applications such as geothermobarometry, there is an urgent need for improved experimental determinations of several key quantities, such as the enthalpies of mixing along both joins.  相似文献   
87.
《Chemical Geology》2006,225(1-2):137-155
Carbon stable isotopes from carbonate minerals (mainly dolomite) from six wells from the Lower Triassic Sherwood Sandstones of the Corrib Gas Field, Slyne Basin, west of Ireland, allow stratigraphic correlation. The results also provide information on palaeoenvironmental change during the deposition of these continental redbed sedimentary rocks. The Triassic reservoir rocks have been buried to > 4000 m and heated to > 165 °C and now contain methane-rich gas. Although the oxygen isotopic signal has been at least partially reset during burial and heating, a primary carbon isotopic signal appears to have survived diagenesis. The carbon isotope ratio varies from − 3.2‰ to + 2.1‰. All six wells show similar stratigraphic changes when all the carbon isotope data are plotted relative to a major playa horizon. δ13C increases from about − 3‰ at the base of the Sherwood to about + 2‰ 170 m above the base. δ13C then decreases to about − 2‰ for the next 70 m and remains steady for the following 50 m. The top 20 m of the Sherwood contains carbonate with a δ13C values decreasing to about − 3‰. The occurrence of a stratigraphically-correlatable carbon isotope pattern implies that the primary evolution signal has been preserved. The change in δ13C correlates with indicators of aridity and biological stress such that the highest δ13C values are in sedimentary rocks deposited in a playa lake (arid times); these rocks contain the greatest quantity of dolomite cement. Conversely, the lowest δ13C values correspond to sedimentary rocks deposited from well-developed rivers (relatively humid times) from the lowest quantity of dolomite cement. The same carbon isotope evolution has been found in another well in the Slyne basin and in Belgium, suggesting that the palaeoenvironmental isotope signal in the Triassic sedimentary rocks of the Corrib Field may have a regional significance.  相似文献   
88.
《Precambrian Research》2006,144(1-2):1-18
Middle Neoproterozoic carbonates are found in the western part of Shandong Pennisula (i.e., the Jiaobei terrane) that is located in the northwestern part of the Sulu orogen in east-central China. For the first time, a successful SHRIMP U–Pb dating, coupled with CL imaging, was conducted on two samples of impure marble from the Fenzishan Group in this tectonic unit. The results yield consistent ages of 786 ± 67 and 240 ± 44 Ma for igneous and metamorphic zircons, respectively. Positive δ13C values as high as +5.6‰ are measured for both pure and impure marbles, consistent not only with the worldwide Neoproterozoic limestones in connection with the Sturtian ice-age, but also with the marbles associated with UHP metamorphic eclogites in the Dabie orogen. O isotope fractionation between calcite and garnet from one sample gave a temperature of 680 °C, pointing to upper amphibolite-facies metamorphic conditions. These results indicate that protolith of the marbles is a kind of limestone that was synchronously deposited with volcaniclastic rocks in the mid-Neoproterozoic rift basin of continental margin. Like the UHP metamorphic rocks in the Dabie-Sulu orogenic belt, both mid-Neoproterozoic magmatism and Triassic metamorphism are recorded in the impure marbles. Therefore, protolith of the impure marbles corresponds to the sedimentary limestone of rift basin developed during the mid-Neoproterozoic breakup of supercontinent Rodinia, but it was the sedimentary cover along the northern margin of the South China Block prior to its Triassic subduction. The occurrence of the mid-Neoproterozoic limestone with the Triassic metamorphism in the southern margin of the North China Block thus indicates tectonic overthrust by a crustal detachment between the sedimentary cover and the Precambrian basement during the continent subduction. As a result, the marbles in affinity to the South China Block were northward thrusted over the basement of the North China Block.  相似文献   
89.
《Precambrian Research》2006,144(3-4):278-296
The evolution of the basement of southern Madagascar north and south of the Ranotsara shear zone was investigated using (U + Th)/Pb electron probe monazite age dating in combination with petrographic constraints. Several monazite grains show a stepwise progression of younger ages towards the rim indicating partial and complete resetting during tectonic, metamorphic and/or fluid events. The oldest ages, ranging from 630–2400 Ma, occur relatively rare in relic cores. A first, clear age-population is dated at 550–560 Ma. Most ages fall in two populations at 420–460 and 490–500 Ma, which in some samples overlap in error. We interprete these ages as dating low-pressure and high-temperature metamorphism. We have also clear evidence for Carboniferous (300–310 Ma) monazite overgrowth rims, which can not directly be related to macroscopic structures or metamorphic parageneses. In combination with literature data, we propose that the observed monazite age populations are related to Gondwana amalgamation and subsequent rifting events during the break up of Gondwana. Our study confirms that only the electron or ion microprobe yields sufficient spatial resolution to date individual shells of multiple zoned monazites in the polymetamorphic basement of Madagascar.  相似文献   
90.
《Applied Geochemistry》2006,21(3):528-545
High mean As concentrations of up to 26.6 μmol/L (1990 μg/L) occur in ground water collected from a fractured-bedrock system composed of sulfidic schist with granitic to dioritic intrusions. Sulfides in the bedrock are the primary source of the As in the ground water, but the presence of arsenopyrite in rock core retrieved from a borehole with As concentrations in the ground water barely above the detection limit of 2.0 μmol/L, shows that there are complicating factors. Chemical analyses of water from 35 bedrock wells throughout a small watershed reveal spatial clustering of wells with high As concentrations. Stiff diagrams and box plots distinguish three distinct types; calcium-bicarbonate-dominated water with low As concentrations (CaHCO3 type), sodium-bicarbonate-dominated water with moderately high As concentrations (NaHCO3 type), and calcium-bicarbonate-dominated water with very high As concentrations (High-As type). It is proposed that differences in recharge area and ground-water evolution, and possible bedrock composition difference are responsible for the chemical distinctions within the watershed. Lack of correlation of As concentrations with pH indicates that desorption of As is an insignificant control on As concentration. Correlations of As concentrations with Fe and redox parameters indicates that reductive dissolution of Fe(III) oxyhydroxides may play a role in the occurrence of high As concentrations in the NaHCO3 and High-As type water. The oxidation of sulfide minerals occurs within the ground-water system and is ultimately responsible for the existence of As in the ground water, but there is no correlation between As and SO4 concentrations, probably due to precipitation of Fe(III) oxyhydroxides and adsorption of As under oxidizing conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号