首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   6篇
  国内免费   10篇
地质学   44篇
海洋学   1篇
  2023年   6篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2017年   6篇
  2015年   5篇
  2014年   3篇
  2013年   3篇
  2012年   7篇
  2011年   3篇
  2006年   1篇
  1999年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
41.
In China, the lack of Li resources is in stark contrast to a large amount of coal gangue produced by coal mining. To determine the distribution patterns and existing status of lithium (Li) elements in the coal gangue, the mineralogical and geochemical analysis were formed on samples of the roof, floor, and parting of No. 02, 2, 8, and 9 coal seams, being mined in Malan mine, Xishan coalfield, Shanxi Province. The results show that the lithium content in this study area is relatively enriched, the highest content is 499 μg/g in sample 02-G, and the average content is 109.8 μg/g, which is two times that of the world average value of claystone (45 μg/g). XRD analysis shows that the mineral composition of parting samples is mainly clay mineral kaolinite, while the coal seam roof and floor samples also include quartz and some iron-bearing minerals, such as pyrite and siderite. Likewise, possible lithium-rich mineral phases and possible lithium-rich factors were investigated in this paper. A comprehensive clay separation experiment and correlation analysis between lithium and major elements indicate that lithium is likely to exist in the clay mineral kaolinite in the study area. It is also found that the content of Li adsorbed by cryptocrystalline kaolinite is generally higher than that of crystalline kaolinite. According to the mechanism of Li+ adsorption in clay minerals, the higher lithium content of cryptocrystalline kaolinite is due to its larger specific surface area, which can adsorb more lithium on the surface.  相似文献   
42.
The origin of silicic rocks (SiO2 > 65 wt%) in Continental Flood Basalt (CFB) provinces could be attributed to complex petrogenetic processes. The 65.5–66 Ma old Deccan Traps CFB contains eight sporadic but significant silicic rock exposures that are studied here in a comprehensive framework using field observations, petrography, major oxides (n = 56), and trace element chemistry. Rhyolite and granophyre, as well as subordinate felsite, ignimbrite, trachyte, pitchstone, and microgranite coexist with volcanic and plutonic mafic rocks such as basalt, basaltic andesite, and gabbro. Multiple isolated and circular/semi-circular hills and linear dykes of silicic rocks are present in the form of lavas with prominent flow folding, rheomorphic ignimbrite, and tuffs. The ‘Rheological Agpaitic Index’ (RAI) indicates that most of the silicic rocks in the Deccan Traps are effusive in nature, except for Rajpipla, Alech, Bombay, and Osham silicic rocks, which are marked by explosive volcanism. Thermodynamic-based Rhyolite-MELTS modelling suggests that the major oxide composition of Pavagadh and Barda basalt is a likely candidate for the parental melt composition of the silicic rocks of the Deccan Traps. Ba, Sr, P, Zr, and Ti anomalies are consistent with the fractionation of K-feldspar, plagioclase, apatite, zircon, and Fe-Ti oxides, respectively. Two broad REE patterns are noticed in the Deccan Traps silicic rocks: a flat pattern for Barda, Alech, and Chogat-Chamardi silicic rocks, and a steep REE pattern for Osham, Rajula, Pavagadh, Rajpipla, and Bombay silicic rocks. Trace element modelling reveals that 5–10 % partial melting of a spinel peridotite source could produce an REE pattern and abundances similar to the associated basalts. Further extensive fractional crystallization (60–90 %) of the parental mafic melt at a deeper depth (where spinel is stable) could produce the REE composition and pattern observed in most silicic rocks except for those of Barda, Alech, and Chogat-Chamardi, which require fractional crystallization of the same parental melt at a shallower depth (where spinel is not stable). The geochemical variability of Deccan Traps silicic rocks reveals an origin from a mantle-derived parental mafic melt that evolved via the assimilation and fractional crystallization (AFC) process to form the silicic exposures, which is typical of silicic volcanism in other global CFBs.  相似文献   
43.
昌邑铁矿位于华北克拉通东部的胶北地体,为赋存于古元古代粉子山群变质岩中的条带状铁建造(BIF)铁矿。矿体主要呈透镜状、似层状,以(含)角闪石英磁铁岩为主要矿石,经历了温度高达636℃的角闪岩相变质作用。铁矿石富SiO2和Fe2O3T(SiO2+Fe2O3T=82.5%~97.7%),含少量Al2O3、MgO和CaO等,显示主要为化学沉积但有少量碎屑或泥质加入的特征。与PAAS相比轻稀土元素亏损、高的Y/Ho比值以及La和Y正异常表明铁矿沉淀于海相环境,而高的Ti/V比值、高Cr、Co和Ni含量以及Eu的正异常表明火山热液的参与,成矿物质来源于火山活动。无明显的Ce负异常表明当时可能存在一个缺氧的大气环境。昌邑铁矿与华北克拉通太古宙BIF相比,总体上没有显著差别,但Al2O3、CaO、MgO和K2O含量相对较高,Eu正异常相对较弱,表明其可能形成于具有更多碎屑物质和更少热液参与的浅水环境。  相似文献   
44.
The Sanjiang Tethyan Metallogenic Domain (STMD) is an important part of the Tethyan giant metallogenic belt. The Yidun Arc is a part of the STMD in the eastern Tibetan Plateau. Recently, four newly discovered Mo–Cu–(W) ore deposits related to granitic intrusions were found distributed along the north-south strike in the southern Yidun Arc, which are identified as the Xiuwacu, Relin, Hongshan, and Tongchanggou deposits herein. These four deposits formed along high-angle north-northwest or north-west strike-slip faults, with vein-type and porphyry-type Mo–Cu mineralization developed in the intrusions. Molybdenite Re–Os and zircon U–Pb dating together with zircon Hf isotopes and whole-rock geochemistry of the intrusions were studied to discern the relationship between mineralization and magmatism, metallogenesis, and tectonic settings. Molybdenite from skarn-type mineralization at the Hongshan deposit has a Re–Os isochron age of 81.2 ± 2.6 Ma (MSWD = 1.3, n = 5) consistent with previously published zircon U–Pb ages and Re–Os ages of porphyry-type Mo mineralization. These results indicate that the Hongshan is a Late Cretaceous porphyry-skarn Cu–Mo deposit. Zircon U–Pb ages of the granitic intrusions in the Xiuwacu, Relin, and Tongchanggou deposits varying from ~ 87.4 Ma to ~ 82.7 Ma. Combined with published molybdenite Re–Os age spectrum (~ 85 Ma to ~ 81.2 Ma), it is proposed that the Mo–Cu–(W) mineralization in the Shangri-La region is spatially, temporally, and probably genetically related to the Late Cretaceous granitic intrusions. The Relin, Hongshan, and Tongchanggou intrusions have high SiO2 (65.2–70.0 wt.%), Sr (363–905 ppm), Sr/Y (22–72), and La/Yb (37–69) ratios, and low Y (11.6–17.0 ppm) and Yb (0.97–1.59 ppm), which displayed adakitic affinities. Their low MgO (0.66–1.44 wt.%), Mg# (25–46), variable negative zircon εHf(t) values (− 7.9 to − 2.3), and Proterozoic two-stages Hf model ages (TDM2 = 1.13–1.62 Ga) suggest that they were probably dominantly derived from partial melting of thickened lower continental crust. According to the tectonic evolution of the Bangong Meso-Tethys Ocean during the Late Mesozoic, the Late Cretaceous igneous event and mineralization in the Yidun Arc likely formed under a late- or post-collision extensional environment, probably related to the collision between the Lhasa and Qiangtang terranes during the Late Cretaceous.  相似文献   
45.
The A'gui Cu deposit is located in the eastern slope of the southern Great Xing'an Range (SGXR), and it is a vein-type Cu deposit spatially and temporally related to the Cretaceous monzogranite which intruded Pingshan Formation. Vein-type Cu orebodies are mainly hosted in the NE and nearly EW faults. Previous studies on the A'gui deposit mainly focused on geological exploration, and there was no study on its fluid evolution and genesis. Therefore, we carried out conducted fluid inclusion and stable isotope (C–H–O–S–Pb) analysis to study the fluid evolution, fluid and ore-forming material sources and genesis of the A'gui deposit. According to the field investigations and mineral crosscutting relationships, four paragenetic stages were identified: quartz–pyrite–chalcopyrite–pyrrhotite–arsenopyrite ± magnetite (Stage I), quartz–pyrite–chalcopyrite (Stage II), quartz–chalcopyrite ± pyrite–sphalerite–galena (Stage III) and carbonate ± quartz (Stage IV). From Stage I to Stage II, the assemblage of fluid inclusions (FIs) in quartz is characterized by the development of daughter mineral–bearing three–phase FIs (SL–type), vapour FIs (V–type), vapour–rich two–phase aqueous FIs (LV–type) and liquid–rich two–phase aqueous FIs (VL–type). Only VL–type FIs appeared in the Stage III quartz and Stage IV calcite. The homogenization temperatures of FIs in stages I, II, III and IV are 329–390 °C, 255–336 °C, 166–244 °C and 120–157 °C, with salinities of 3.37–45.33 wt%, 3.53–39.76 wt%, 4.17–7.86 wt% and 3.37–7.15 wt% NaCl eqv., respectively. The fluid inclusion type assemblage suggested that obvious fluid boiling occurred in the Stage I and Stage II. Fluid boiling may be the reason for the precipitation of useful minerals. According to the HO isotope analysis of stages I–II quartz (δ18OH2O = −2.1 to 3.2 ‰, δDV–SMOW = −128.4 ‰ to −110.6 ‰), the fluid was originally magmatic water. From Stage III to Stage IV (δ18OH2O = −12.3 to −2.3 ‰, δDV–SMOW = −129.6 ‰ to −104.2 ‰), the HO isotope value is obviously close to the meteoric water line, indicating that meteoric water is mixed with evolved magmatic solutions. The ore–forming fluid of the A'gui deposit represents a medium–high temperature NaCl-H2O magmatic hydrothermal system. The C isotope compositions (δCV–PDB = −5.74 ‰ to −4.76 ‰) in stage IV indicate that the C in the fluid was derived from a magmatic source and was affected by meteoric water. In addition, the measured S isotope compositions in stages I–III of the hydrothermal fluids (δ34SV–CDT = 2.2 to 3.7 ‰) indicate that S mainly comes from granitic magma. Further, the Pb isotope (206Pb/204Pb = 18.276–18.367, 207Pb/204Pb = 15.52–15.556, 208Pb/204Pb = 38.157–38.193) in stages I–III indicate that the ore-forming materials are derived from the mixture of mantle and orogenic material. In summary, this study showed the A'gui is a typical magmatic hydrothermal vein-type Cu deposit that related to Cretaceous monzogranite formed under the joint constraints of Mongolia-Okhotsk Ocean and Paleo-Pacific Ocean tectonic system. Fluid boiling and mixing are the main ore-forming mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号