首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   3篇
  国内免费   2篇
地球物理   4篇
地质学   8篇
海洋学   3篇
  2015年   3篇
  2014年   3篇
  2011年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  1999年   3篇
排序方式: 共有15条查询结果,搜索用时 109 毫秒
1.
《Applied Geochemistry》2005,20(5):907-917
Solutions draining the Alta Mine, Jefferson County, MT, were contaminated by acid sulfate waters (ASW) generated from anthropogenic exposure of meteoric waters to sulfidic underground mine workings and a waste-rock pile. In 1999, a remediation effort was initiated in an attempt to improve the quality of water draining the site through removal of the waste-rock pile with which these solutions come in contact. ASW were sampled in the mineshaft prior to entering the waste-rock pile and upon discharge from the waste-rock pile aquifer near the pile toe. ASW composition changed as solutions flowed through the waste-rock pile due to sulfide and silicate weathering and schwertmannite precipitation.Schwertmannite and goethite were both sampled in the waste-rock pile where a distinct field relation was observed between the two minerals. Schwertmannite was always in contact with actively flowing ASW, while goethite was never in direct contact with ASW and was generally above the waste-rock water table. Goethite is hypothesized to be re-dissolved/re-precipitated schwertmannite that was deposited under higher flow conditions and subsequently transformed to goethite through exposure to wet/dry cycling associated with seasonal fluctuations in the amount of water moving through the hydrogeologic system. Trace metal concentrations in ammonium oxalate extracts of these minerals provides the first published data on the behavior of multiple trace metals through this phase transformation, which has important ramifications for considering schwertmannite as a long term metal sink due to its known metastability with respect to goethite. A relative retention scale through this phase transformation of Pb > Zn, Mn > As, Al, Cu is potentially applicable to other ASW systems.  相似文献   
2.
The mobility of toxic metals in soils or sediments is of great concern to scientists and environmentalists since it directly affects the bioavailability of metals and their movement to surface and ground waters. In this study, a multi-surface soil speciation model for Cd (II) and Pb (II) was developed to predict the partition of metals on various soil solid components (e.g. soil organic matter (SOM), oxide mineral, and clay mineral). In previous study, the sorption of metal cations on SOM and oxide minerals has been evaluated by thermodynamically based surface complexation model. However, metal binding to soil clay fractions was normally treated in a simplistic manner: only cation exchange reactions were considered and exchange coefficient was assumed unity. In this study, the binding of metals onto clays was described by a two-site surface sorption model (a basal surface site and an edge site). The model was checked by predicting the adsorption behavior of Cd (II) and Pb (II) onto three selected Chinese soils as a function of pH and ionic strengths. Results showed that the proposed model more accurately predicted the metal adsorption on soils under studied condition, especially in low ionic strength condition, suggesting that adsorption of metals to soil clay fractions need to be considered more carefully when modeling the partition of trace elements in soils. The developed soil speciation model will be useful when evaluating the movement and bioavailability of toxic metals in soil environment.  相似文献   
3.
《Marine Policy》1999,23(4-5):465-477
This paper examines the statutory measures developed to deal with coastal erosion and flooding in England and Wales. It considers coastal defence as a broad approach to the mechanisms of protection including both structural and planned responses. The roles of operating authorities with statutory authority to undertake coastal defence works are examined and the link between planning and management issues addressed. Spatial aspects of coastal defence responses are also considered. The paper concludes that while statutory approaches will continue to be important in coastal defence issues non-statutory approaches, underpinned by the statutory system, will develop in importance and predominate as the preferred methods of response.  相似文献   
4.
5.
Dark respiration (non-photorespiratory mitochondrial respiration),which occurs both in the light and in darkness,is vital for growth and survival of algae and plays a critical role in modulating the carbon balance of them.In the present study,we have investigated dark respiration in the light (R L) and in darkness (R D) in three marine macroalgal species,Hizikia fusiformis (phaeophyta),Gracilaria lemaneiformis (Rhodophyta) and Ulva lactuca (Chlorophyta),cultured at 20℃ using aeration with two CO 2 conditions:current ambient (CO 2 concentration about 380 μl/L) and elevated CO 2 (approximately 720 μl/L) air.R L was estimated by using the Kok method,whereas R D was determined as the rate of O 2 influx at zero light.The results showed that both R L and R D were unchanged for the elevated CO 2-grown algae relative to ambient CO 2 concentration for all the algal species tested.However,R L was significantly lower than R D across all the algal species and growth CO 2 treatments,demonstrating that daytime respiration was partly depressed by the light.The percentage of inhibition of respiration by light was similar between ambient and elevated CO 2 grown algae.The ratio of respiration to photosynthesis,which tended to decrease when estimated using R L instead of R D,was not altered for the elevated relative to ambient CO 2 concentration.The results suggest that R L,rather than R D,is a more accurate estimate of nonphotorespiratory carbon loss in marine macroalgae during the daytime.It would not be anticipated that elevated atmospheric CO 2 would exert a substantial influence on respiratory flux either in the light or in darkness in these particular marine macroalgal species.  相似文献   
6.
《Applied Geochemistry》2005,20(6):1226-1239
High concentrations of Cr (up to 812 ppm) and As (up to 6740 ppm) were detected in precipitates of the mineral schwertmannite in areas influenced by acid mine drainage. Schwertmannite may act as well as a natural filter for these elements in water as well as their source by releasing the previously bound elements during its dissolution or mineral-transformation. The mechanisms of uptake and potential release for the species arsenate and chromate were investigated by performing synthesis and stability experiments with schwertmannite.Schwertmannite, synthesized in solutions containing arsenate in addition to sulphate, was enriched by up to 10.3 wt% arsenate without detectable structural changes as demonstrated by powder X-ray diffraction (XRD). In contrast to arsenate, a total substitution of sulphate by chromate was possible in sulphate-free solutions. Thereby, the chromate content in schwertmannite could reach 15.3 wt%.To determine the release of oxyanions from schwertmannite over time, synthetic schwertmannite samples containing varying amounts of sulphate, chromate and arsenate were kept at a stable pH of either 2 or 4 over 1 year in suspension. At several time intervals Fe and the oxyanions were measured in solution and alterations of the solid part were observed by XRD and Fourier-Transform infrared (FT-IR) spectroscopy. At pH 2 schwertmannite partly dissolved and the total release of arsenate (24%) was low in contrast to chromate (35.4–57.5%) and sulphate (67–76%). Accordingly, the ionic activity product (log IAP) of arsenated schwertmannite was lowest (13.5), followed by the log IAP for chromated schwertmannite (16.2–18.5) and the log IAP for regular (=non-substituted) schwertmannite (18). At pH 4 schwertmannite transformed to goethite, an effect which occurred at the fastest rate for regular schwertmannite (=arsenate- and chromate-free), followed by chromate and arsenate containing schwertmannite. Both chromate and more evidently arsenate have a stabilizing effect on the schwertmannite structure, because they retarded the dissolution and transformation reactions.These kinetic investigations as well as crystallographic considerations demonstrated that the strength of the Fe(III) complexes with the anions controls the formation process and the stability of schwertmannite: with increasing affinity of the oxyanions to form complexes with Fe(III), the strength of the resulting binding and thus the stability and substitution preference increases.  相似文献   
7.
《Applied Geochemistry》1999,14(6):807-816
A rapid procedure is described to evaluate the significance of inorganic and organic pollutants in fine-grained sediments. The air- (<30°C) or freeze-dried samples are screened within 30 min. in stainless steel sieves (<0.04 mm) prior to chemical analysis. This procedure is also suitable for analysis of such elements as Hg and many non-volatile organic pollutants. The sediment size fraction of <0.04 mm was chosen in order to separate the smallest grain-size obtainable by rapid dry-screening techniques; this is representative of the grain-size of suspended matter transported at low and medium river discharge (0.1–0.7 m/s). The screened fraction (<0.04 mm) of aquatic sediments is more homogeneous in grain-size and distribution, and the fine particles are more capable of adsorbing pollutants than coarser fractions. However, large differences are observed in grain-size distribution and adsorbable phases from one sample to another, even in the smallest size fractions (<0.04, <0.02, <0.002 mm). Clay minerals, Fe- and Mn-(oxy)hydrates, amorphous silica and humic substances all adsorb water at normal humidity. In order to estimate and standardise the adsorption capacity of the surface of these screened sediment fractions, the weight loss after heating at 105°C is used, instead of tedious quantification of all the above mentioned sediment phases. In addition, this procedure allows the rejection of sediment samples, unsuitable for monitoring purposes, which have very low adsorption capacities. In order to correct for the variable adsorption capacity of different sediment samples or size fractions, the weight loss (WL) at 105°C can be inserted in the widely used GeoIndex formula (Igeo105°=log2 (Cmeasured/Cbackground1WL105°C). This improves the evaluation of pollution in aquatic environments.  相似文献   
8.
《Applied Geochemistry》2006,21(3):437-445
Oxidation of FeS2 in mine waste releases SO42-, Fe(II) and H+, resulting in acid mine drainage (AMD). Subsequent oxidation and precipitation of Fe produces different Fe(III) phases where the mineralogical composition depends on pH and the ambient concentrations of metal ions and complexing ligands. The oxidation and precipitation of Fe in AMD has been studied under various conditions with the intent of understanding the role these processes play in the natural attenuation of metal contaminants in the AMD. The combined process of Fe oxidation and precipitation in AMD from the Kristineberg mine, northern Sweden, has been investigated with pH-stat experiments at pH 5.5 and 7 at 10 and 25 °C. The precipitates formed have been characterised in terms of mineralogy and surface area. Similar phases formed at both temperatures, while the oxidation and precipitation occurred more readily at the higher temperature and higher pH. At pH 7, mainly lepidocrocite (γ-FeOOH) was precipitated while at a lower pH of 5.5, a mixture of schwertmannite, goethite, ferrihydrite and lepidocrocite formed. The ambient Zn(II) concentration was immediately reduced to acceptable levels (according to Swedish EPA) at pH 7 whereas a 2–3 weeks ageing period was necessary to achieve the same effect at pH 5.5. The presence of natural organic matter (NOM) reduced the attenuating effect at pH 5.5 after ageing but increased it slightly at pH 7. Addition of Zn(II) at pH 8 resulted in a mixed Fe(III)–Zn(II) precipitate of unknown composition with some Zn(II) adsorbed at the surface. The Fe(III) precipitates formed are potentially useful for the natural attenuation of metal contaminants in AMD although based on these investigations, the degree of success depends upon pH and NOM concentration.  相似文献   
9.
The upscaling of dispersivity in solute transport in heterogeneous aquifers is addressed with a numerical stochastic formulation. This work represents progress toward converting theory into scalable numerical models that can be compared to laboratory experiments. Traditional global assumptions of low variance, ergodicity, single correlation scale, stationarity, and the like are avoided through the use of a flexible Lagrangian numerical, not analytical, framework, which allows assumptions to be local. A method of calculating grid-block upscaled dispersivities is presented. Computational results are obtained for a heterogeneous tank experiment, with reasonable behavior.  相似文献   
10.
The extraction of mineral resources requires access through underground workings, or open pit operations, or through drillholes for solution mining. Additionally, mineral processing can generate large quantities of waste, including mill tailings, waste rock and refinery wastes, heap leach pads, and slag. Thus, through mining and mineral processing activities, large surface areas of sulfide minerals can be exposed to oxygen, water, and microbes, resulting in accelerated oxidation of sulfide and other minerals and the potential for the generation of low-quality drainage. The oxidation of sulfide minerals in mine wastes is accelerated by microbial catalysis of the oxidation of aqueous ferrous iron and sulfide. These reactions, particularly when combined with evaporation, can lead to extremely acidic drainage and very high concentrations of dissolved constituents. Although acid mine drainage is the most prevalent and damaging environmental concern associated with mining activities, generation of saline, basic and neutral drainage containing elevated concentrations of dissolved metals, non-metals, and metalloids has recently been recognized as a potential environmental concern. Acid neutralization reactions through the dissolution of carbonate, hydroxide, and silicate minerals and formation of secondary aluminum and ferric hydroxide phases can moderate the effects of acid generation and enhance the formation of secondary hydrated iron and aluminum minerals which may lessen the concentration of dissolved metals. Numerical models provide powerful tools for assessing impacts of these reactions on water quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号