首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   33篇
  国内免费   155篇
大气科学   33篇
地球物理   36篇
地质学   26篇
海洋学   256篇
综合类   62篇
自然地理   9篇
  2022年   2篇
  2021年   6篇
  2020年   1篇
  2019年   1篇
  2018年   5篇
  2017年   9篇
  2016年   16篇
  2015年   44篇
  2014年   42篇
  2013年   31篇
  2012年   49篇
  2011年   48篇
  2010年   29篇
  2009年   32篇
  2008年   19篇
  2007年   16篇
  2006年   17篇
  2005年   18篇
  2004年   4篇
  2003年   5篇
  2002年   9篇
  2001年   5篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
排序方式: 共有422条查询结果,搜索用时 31 毫秒
71.
渤黄东海潮能通量与潮能耗散   总被引:7,自引:0,他引:7  
利用同化高度计资料和沿岸验潮站资料对潮汐数值模式进行同化,根据同化后的数值模式结果,对渤黄东海中的潮能通量和潮能耗散进行了研究.M2分潮从太平洋进入渤黄东海的潮能为122.499GW,占4个主要分潮进入总量的79%.黄海是半日分潮潮能耗散的主要海区.全日分潮则主要耗散在东海.全日分潮在遇到陆坡的阻挡以后有一部分潮能沿着冲绳海槽向西南传播,并有一部分潮能反射回太平洋,其中O1分潮通过C3断面反射回太平洋的潮能,约占其传入东海潮能的44%.  相似文献   
72.
台风过程可使海洋悬浮物浓度的分布在短时间内发生极大变化,并影响海洋生态环境以及海洋资源的分布。受台风期间海洋观测数据的限制,台风过程对海洋悬浮物浓度的影响尚不明确。本文利用GOCI (Geostationary Ocean Color Imager,GOCI)卫星遥感数据,以2019年8月台风“利奇马”为例,对其过境前后东中国海表层悬浮物浓度的时空变化进行了定量研究。结果表明,台风“利奇马”对闽浙沿岸的影响程度最大,使悬浮物质量浓度中高值(≥5 mg/L)覆盖面积和浓度平均值分别增大92%和62%,影响持续时间为4 d;对长江口附近海域的影响程度次之,使悬浮物浓度中高值覆盖面积和浓度平均值分别增大19%和17%,影响持续时间为3 d;对苏北浅滩的影响程度最小,悬浮物质量浓度中高值覆盖面积变化不大,但浓度平均值增大了30%,影响持续时间为4 d。研究结果表明卫星遥感数据可以量化台风过程对东中国海表层悬浮物浓度的影响,弥补极端天气条件下无法进行现场观测的不足。  相似文献   
73.
渤、黄海冬季海冰对大气环流及气候变化的响应   总被引:4,自引:3,他引:1  
受全球气候变暖影响,渤、黄海冬季气候呈明显的变暖趋势。在1951-2010年共60年中,后30年较前30年,气温升高了1.6℃,升幅异常显著。与此相对应,渤、黄海冬季海冰的冰级下降了0.6级。渤、黄海冰情持续偏轻与全球气候变暖趋势相当一致。冬季渤、黄海气温异常是对全球大气环流变化的响应,直接受同期东亚大气环流制约。研究表明,渤海海冰和大气环流的关系是清楚的,这对预测渤、黄海海冰具有重要意义。  相似文献   
74.
台风引起的大浪对海岸带及海洋工程有很大的影响。进行长时间序列的台风资料分析和台风浪模拟,对海岸带规划及海洋工程防护有一定的指导意义。本文利用西北太平洋热带气旋最佳路径数据集(CMA-STI热带气旋最佳路径数据集)中提供的台风信息,分别统计和分析了1949—2010年和1981—2010年出现在东中国海海域的台风的时间分布特征和空间分布特征,并将2个时间段的分布特征进行比较。利用高桥公式和藤田公式计算了1981—2010年间92次台风过程的气压场分布,进而计算出风场,把经过验证的风场做为驱动,通过SWAN模式计算出有效波高。经过与B22001号浮标实测资料的对比,模型计算风速和有效波高均与实测值符合较好。根据模拟计算结果,分析了东中国海海域台风浪有效波高的分布特征。  相似文献   
75.
近海漂流轨迹观测系统,采用全球定位系统GPS进行漂流瓶体的定位,通过移动通讯网络GPRS进行瓶体与服务器之间的数据和指令传递,服务器上存储的瓶体运动轨迹即可用于近海环流研究。2011年9月14~18日期间在浙江象山港内段海区进行了近海GPS-GPRS漂流轨迹观测系统的现场应用。本文首先介绍了该观测系统的基本构造和工作原理,而后对首次现场布放试验过程进行说明,最后给出了轨迹追踪的现场观测结果。研究表明基于GPS-GPRS技术的漂流轨迹观测系统可辅助近海潮致余环流的研究工作,具有一定的科学应用前景。  相似文献   
76.
Historical surface drifter observations collected from the Southern Ocean are used to study the near-surface structure, variability, and energy characteristics of the Antarctic Circumpolar Current (ACC). A strong, nearly zonal ACC combined with complex fronts dominates the circulation system in the Southern Ocean. Standard variance ellipses indicate that both the Agulhas Return Current and the East Australian Warm Current are stable supplements of the near-surface ACC, and that the anticyclonic gyre formed by the Brazil warm current and the Malvinas cold current is stable throughout the year. During austral winter, the current velocity increases because of the enhanced westerly wind. Aroused by the meridional motion of the ACC, the meridional velocity shows greater instability characteristics than the zonal velocity does over the core current. Additionally, the ACC exhibits an eastward declining trend in the core current velocity from southern Africa. The characteristics of the ACC are also argued from the perspective of energy. The energy distribution suggests that the mean kinetic energy (MKE), eddy kinetic energy (EKE), and are strong over the core currents of the ACC. However, in contrast, EKE/MKE suggests there is much less (more) eddy dissipation in regions with strong (weak) energy distribution. Both meridional and zonal energy variations are studied to illustrate additional details of the ACC energy characteristics. Generally, all the energy forms except EKE/MKE present west-east reducing trends, which coincide with the velocity statistics. Eddy dissipation has a much greater effect on MKE in the northern part of the Southern Ocean.  相似文献   
77.
78.
During the two cruises in March and July of 2011, the tidal cycling of turbulent properties and the T/S profiles at the same location in seasonally stratified East China Sea (ECS) were measured synchronously by a bottom-mounted fast sampling ADCP (acoustic Doppler current profiler) and a RBR CTD (RBR-620) profiler. While focusing on the tide-induced and stratification’s impact on mixing, the Reynolds stress and the turbulent kinetic energy (TKE) production rate were calculated using the ‘variance method’. In spring, the features of mixing mainly induced by tides were clear when the water column was well-mixed. Velocity shear and turbulent parameters intensified towards the seabed due to the bottom friction. The components of the velocity shear and the Reynolds stress displayed a dominant semi-diurnal variation related to velocity changes caused by the flood and ebb of M2 tide. Stratification occurred in summer, and the water column showed a strongly stratified pycnocline with a characteristic squared buoyancy frequency of N2 ~ (1–6) × 10?3 s?2. The components of the velocity shear and the Reynolds stress penetrated upwards very fast from the bottom boundary layer to the whole water column in spring, while in summer they only penetrated to the bottom of the pycnocline with a relatively slow propagation speed. In summer, the TKE production within the pycnocline was comparable with and sometimes larger than that in the well-mixed bottom layer under the pycnocline. Considering the associated high velocity shear, it is speculated that the mixing in the pycnocline is a result of the local velocity shear.  相似文献   
79.
Relative roles of Ekman transport and Ekman pumping in driving summer upwelling in the South China Sea (SCS) are examined using QuikSCAT scatterometer wind data. The major upwelling regions in the SCS are the coastal regions east and southeast of Vietnam (UESEV), east and southeast of Hainan Island (UESEH), and southeast of Guangdong province (USEG). It is shown that the Ekman transport due to alongshore winds and Ekman pumping due to offshore wind stress curl play different roles in the three upwelling systems. In UESEV, Ekman pumping and Ekman transport are equally important in generating upwelling. The Ekman transport increases linearly from 0.49 Sv in May to 1.23 Sv in August, while the Ekman pumping increases from 0.36 to 1.22 Sv during the same period. In UESEH, the mean estimates of Ekman transport and Ekman pumping are 0.14 and 0.07 Sv, respectively, indicating that 33% of the total wind-driven upwelling is due to Ekman pumping. In USEG, the mean Ekman transport is 0.041 Sv with the peak occurring in July, while Ekman pumping is much smaller (0.003 on average), indicating that the upwelling in this area is primarily driven by Ekman transport. In the summers of 2003 and 2007 following El Niño-Southern Oscillation (ENSO) events, both Ekman transport and Ekman pumping decrease in UESEV due to the abnormally weak southwest monsoon. During the same events, however, Ekman transport is slightly enhanced and Ekman pumping is weakened in UESEH and USEG.  相似文献   
80.
The tides and tidal energetics in the Indonesian seas are simulated using a three-dimensional finite volume coastal ocean model. The high-resolution coastline-fitted model is configured to better resolve the hydrodynamic processes around the numerous barrier islands. A large model domain is adopted to minimize the uncertainty adjacent to open boundaries. The model results with elevation assimilation based on a simple nudge scheme faithfully reproduced the general features of the barotropic tides in the Indonesian Seas. The mean root-mean-square errors between the observed and simulated tidal constants are 2.3, 1.1, 2.4, and 1.5 cm for M2, S2, K1, and O1, respectively. Analysis of the model solutions indicates that the semidiurnal tides in the Indonesian Seas are primarily dominated by the Indian Ocean, whereas the diurnal tides in this region are mainly influenced by the Pacific Ocean, which is consistent with previous studies. Examinations of tidal energy transport reveal that the tidal energy for both of the simulated tidal constituents are transported from the Indian Ocean into the IS mainly through the Lombok Strait and the Timor Sea, whereas only M2 energy enters the Banda Sea and continues northward. The tidal energy dissipates the most in the passages on both sides of Timor Island, with the maximum M2 and K1 tidal energy transport reaching about 750 and 650 kW m–1, respectively. The total energy losses of the four dominant constituents in the IS are nearly 338 GW, with the M2 constituent dissipating 240.8 GW. It is also shown that the bottom dissipation rate for the M2 tide is about 1–2 order of magnitudes larger than that of the other three tidal components in the Indonesian seas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号