首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   1篇
  国内免费   10篇
测绘学   5篇
大气科学   17篇
地球物理   29篇
地质学   77篇
海洋学   62篇
天文学   5篇
综合类   7篇
自然地理   35篇
  2022年   1篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   7篇
  2016年   10篇
  2015年   6篇
  2014年   9篇
  2013年   16篇
  2012年   4篇
  2011年   17篇
  2010年   13篇
  2009年   26篇
  2008年   10篇
  2007年   18篇
  2006年   17篇
  2005年   10篇
  2004年   11篇
  2003年   8篇
  2002年   4篇
  2001年   8篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有237条查询结果,搜索用时 265 毫秒
231.
Time series of west-Antarctic (WA) annual surface mass balance (SMB) from ITASE firn/ice cores are compared with the ECMWF 1958–2001 ERA40 reanalysis-based model forecasts. The ITASE series partially confirm the spatial structure of the signature of El Nino Southern Oscillation (ENSO) in WA precipitation as previously identified in ERA40 and other models. However, an improvement of ERA40’s ability to reproduce the west-Antarctic SMB since the 1970s is evidenced and is probably related to the onset and increasing use of satellite data in late 1972 and 1978. Restricting the analysis to the 1973–2000 (satellite) period, interannual correlations between ITASE cores and ERA40 SMB series are generally significant (95% confidence level) but weak. The fraction of common variability increases when the series are spatially averaged, suggesting that small-scale perturbation (SSP) of the large-scale SMB variability significantly contributes to year-to-year variability in single core series. A comparison of stake network and core data from the South Pole suggests that SSP can almost fully obscure the large-scale component of the SMB variability as recorded in a single core. Because of SSP, the 1973–2000 period is too brief to verify whether all aspects of the WA large-scale signatures of ENSO and of the Antarctic Oscillation suggested by ERA40 are confirmed in the core series. More annually resolved field data from cores and stakes, spatially extended using high-resolution ground penetrating radar, are necessary to fully assess the relationship between the Antarctic SMB and the large-scale climate as currently suggested by meteorological and climate models.  相似文献   
232.
Currently, and throughout much of the Amazonian, the mean annual surface temperatures of Mars are so cold that basal melting does not occur in ice sheets and glaciers and they are cold-based. The documented evidence for extensive and well-developed eskers (sediment-filled former sub-glacial meltwater channels) in the south circumpolar Dorsa Argentea Formation is an indication that basal melting and wet-based glaciation occurred at the South Pole near the Noachian–Hesperian boundary. We employ glacial accumulation and ice-flow models to distinguish between basal melting from bottom-up heat sources (elevated geothermal fluxes) and top-down induced basal melting (elevated atmospheric temperatures warming the ice). We show that under mean annual south polar atmospheric temperatures (?100 °C) simulated in typical Amazonian climate experiments and typical Noachian–Hesperian geothermal heat fluxes (45–65 mW/m2), south polar ice accumulations remain cold-based. In order to produce significant basal melting with these typical geothermal heat fluxes, the mean annual south polar atmospheric temperatures must be raised from today’s temperature at the surface (?100 °C) to the range of ?50 to ?75 °C. This mean annual polar surface atmospheric temperature range implies lower latitude mean annual temperatures that are likely to be below the melting point of water, and thus does not favor a “warm and wet” early Mars. Seasonal temperatures at lower latitudes, however, could range above the melting point of water, perhaps explaining the concurrent development of valley networks and open basin lakes in these areas. This treatment provides an independent estimate of the polar (and non-polar) surface temperatures near the Noachian–Hesperian boundary of Mars history and implies a cold and relatively dry Mars climate, similar to the Antarctic Dry Valleys, where seasonal melting forms transient streams and permanent ice-covered lakes in an otherwise hyperarid, hypothermal climate.  相似文献   
233.
An exploratory study has been conducted to test the utility of automated mineral analysis observations to identify flue dust particles in topsoils exposed for several decades to emissions of a copper smelter. The methods used are readily available in mining countries. To identify the most impacted sites, the Cu, Zn, Pb, Mo and As levels in water and diluted sulphuric acid extractions of four topsoil size fractions (833–495 μm, 246–148 μm; 74–38 μm; <38 μm) were analysed. X-ray diffraction analyses were used to demonstrate the mineralogical degradation of smectite phases when approaching the smelter. Flue dust particles in different states of conservation in topsoils were directly observed by scanning electron microscopy (SEM) aided by energy dispersive detection of X-rays. Qemscan® scanning of dispersed topsoil preparations (10,000 particles) pinpoints smelter particles by their density; flue dust pearls can be tracked by sorting particles according to their sphericity, clearly identifying them as pyrometallurgical products. When sorting soil particles by mineral groups (e.g. sulphides), an increase in this phase group can be observed when approaching the smelter. SEM resolution limits observations to particles larger than 2–3 μm. Smaller particles can be observed by transmission electron microscopy, although observer experience and the availability of equipment time are essential as is the case for SEM.  相似文献   
234.
A fretted valley system on Mars located at the northern mid-latitude dichotomy boundary contains lineated valley fill (LVF) with extensive flow-like features interpreted to be glacial in origin. We have modeled this deposit using glacial flow models linked to atmospheric general circulation models (GCM) for conditions consistent with the deposition of snow and ice in amounts sufficient to explain the interpreted glaciation. In the first glacial flow model simulation, sources were modeled in the alcoves only and were found to be consistent with the alpine valley glaciation interpretation for various environments of flow in the system. These results supported the interpretation of the observed LVF deposits as resulting from initial ice accumulation in the alcoves, accompanied by debris cover that led to advancing alpine glacial landsystems to the extent observed today, with preservation of their flow texture and the underlying ice during downwasting in the waning stages of glaciation. In the second glacial flow model simulation, the regional accumulation patterns predicted by a GCM linked to simulation of a glacial period were used. This glacial flow model simulation produced a much wider region of thick ice accumulation, and significant glaciation on the plateaus and in the regional plains surrounding the dichotomy boundary. Deglaciation produced decreasing ice thicknesses, with flow centered on the fretted valleys. As plateaus lost ice, scarps and cliffs of the valley and dichotomy boundary walls were exposed, providing considerable potential for the production of a rock debris cover that could preserve the underlying ice and the surface flow patterns seen today. In this model, the lineated valley fill and lobate debris aprons were the product of final retreat and downwasting of a much larger, regional glacial landsystem, rather than representing the maximum extent of an alpine valley glacial landsystem. These results favor the interpretation that periods of mid-latitude glaciation were characterized by extensive plateau and plains ice cover, rather than being restricted to alcoves and adjacent valleys, and that the observed lineated valley fill and lobate debris aprons represent debris-covered residual remnants of a once more extensive glaciation.  相似文献   
235.
2005 年10-11 月中美联合考察队在各拉丹冬峰北部果曲冰川平坦的粒雪盆 (33o34'37.8"N, 91o10'35.3"E, 5720 m a.s.l.) 钻取了一支冰芯, 通过对该冰芯进行多参数定年, 恢复了青藏高原中部各拉丹冬地区近70 年来降水中δ18O 的变化历史。根据冰芯中季风期和非季风期δ18O 值与临近气象台站气温的正相关性, 重建了该地区70 年来的春季和夏季的气温变化。结果表明, 各拉丹冬冰芯中δ18O 记录的春季和夏季升温趋势非常明显; 根据回归分析, 冰芯中非季风期的δ18O 每增大(或减小) 1‰相当于春季气温升高(或降低) 1.3 oC; 季风 期的δ18O 每增大(或减小) 1‰相当于夏季气温升高(或降低) 0.4 oC; 各拉丹冬冰芯中δ18O 记录恢复的春季和夏季气温与北半球春季和夏季的气温变化具有一致的趋势, 但各拉丹冬地区的增温幅度比北半球要大, 同时春季的增温幅度也高于夏季。  相似文献   
236.
INTRODUCTIONWindsWithhorizontalshearareliabletoinduceoceanicupwelling.Forexample,theresPOnseoftheoceantotheatmOSphericjetasshowninFig.Ihascausedacurlthatinducesupwellinginoneregion,downwellinginanother.IftheoceanisinfinitelydeepandhasconstantBrunt--V...  相似文献   
237.
Sources of sedimentary organic matter to a Morse River, Maine (USA) salt marsh over the last 3390 ± 60 RCYBP (Radiocarbon Years Before Present) are determined using distribution patterns of n-alkanes, bulk carbon isotopic analysis, and compound-specific carbon isotopic analysis. Marsh foraminiferal counts suggest a ubiquitous presence of high marsh and higher-high marsh deposits (dominated by Trochammina macrescens forma macrescens, Trochammina comprimata, and Trochammina inflata), implying deposition from ∼0.2 m to 0.5 m above mean high water. Distributions of n-alkanes show a primary contribution from higher plants, confirmed by an average chain length value of 27.5 for the core sediments, and carbon preference index values all >3. Many sample depths are dominated by the C25 alkane. Salicornia depressa and Ruppia maritima have similar n-alkane distributions to many of the salt marsh sediments, and we suggest that one or both of these plants is either an important source to the biomass of the marsh through time, or that another unidentified higher plant source is contributing heavily to the sediment pool. Bacterial degradation or algal inputs to the marsh sediments appear to be minor. Compound-specific carbon isotopic analyses of the C27 alkane are on average 7.2‰ depleted relative to bulk values, but the two records are strongly correlated (R2 = 0.89), suggesting that marsh plants dominate the bulk carbon isotopic signal. Our study underscores the importance of using caution when applying mixing models of plant species to salt marsh sediments, especially when relatively few plants are included in the model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号