首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   0篇
  国内免费   1篇
测绘学   2篇
大气科学   30篇
地球物理   111篇
地质学   172篇
海洋学   231篇
天文学   1篇
综合类   4篇
自然地理   30篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   2篇
  2017年   14篇
  2016年   11篇
  2015年   20篇
  2014年   40篇
  2013年   29篇
  2012年   21篇
  2011年   47篇
  2010年   36篇
  2009年   34篇
  2008年   24篇
  2007年   47篇
  2006年   31篇
  2005年   23篇
  2004年   18篇
  2003年   25篇
  2002年   36篇
  2001年   26篇
  2000年   12篇
  1999年   27篇
  1998年   17篇
  1997年   17篇
  1996年   6篇
  1988年   1篇
  1987年   5篇
  1986年   3篇
排序方式: 共有581条查询结果,搜索用时 15 毫秒
451.
Shelf break systems are highly dynamic environments. However little is known about the influence that benthic interactions and water mass mixing may have on vertical distributions of iron in these systems. Dissolved Fe (< 0.4 μm) concentrations were measured in samples from nine vertical profiles across the upper slope (150–2950 m water depth) at the Atlantic Ocean–Celtic Sea shelf break. Dissolved iron concentrations varied between less than 0.2 and 5.4 nM, and the resulting detailed section showed evidence of a range of processes influencing the Fe distributions. The near sea floor data were interpreted in terms of release and removal processes. The concentrations of dissolved Fe present in near seabed waters were consistent with release of Fe from in situ remineralisation of particulate organic matter at two upper slope stations, and possibly release from pore water upon resuspension on shelf. Lateral transport of dissolved iron was evident from elevated Fe concentrations in an intermediate nepheloid layer and its advection along isopycnals. Surface waters at the shelf break also showed evidence of vertical mixing of deeper iron-rich waters. These waters contained macronutrients that sustained primary productivity in these otherwise nutrient-depleted surface waters. The data also suggest some degree of stabilisation of relatively high concentrations of iron, presumably through ligand association or as colloids. This study supports the view that lateral export of dissolved iron to the interior of the ocean from shelf and coastal zones and may have important implications for the global budget of oceanic iron.  相似文献   
452.
Flow-parallel linear ridge–runnel (RR) bedforms composed of mainly cohesive sediments have been investigated at an intertidal site located at Hills Flats in the Severn Estuary, UK. It is argued that the sequences of sand–mud laminae in the ridge sediments indicate strongly that RR are depositional bedforms. Faint RR topography scoured in the underlying soft bedrock and parallel rows of coarser particle now found at the base of ridges are evidence of secondary vortices that may have provided a catalyst for mud ridge growth. Bed shear stress remains below the erosion threshold for all but the most recent and weak surficial mud deposits which are removed by evorsion [mechanical erosion by turbulent flows that may also carry sand and/or gravel] during Spring tidal flow ca. 60 cm/s. Differences in flow characteristics between ridges and runnel are minor. Corrasion [to erode or be eroded by abrasion] by sparse coarse sediment largely prevents net deposition in the runnels. Over time a slight imbalance between mud deposition and erosion rates allows slow growth of the ridges suggesting that these mudflats may be especially sensitive to slight changes in the local hydrodynamic regime and/or sediment supply.  相似文献   
453.
A series of individual turbidites, correlated over distances >100 km, are present in the recent fill of the Agadir Basin, offshore northwest Africa. The aim here is to unravel multiple turbidite source areas and flow pathways, and show how turbidite provenance studies contribute to interpretation of flow processes. Agadir Basin turbidites are sourced from four main areas, with the majority originating from the siliciclastic Morocco Shelf; their sand-mud distribution is strongly controlled by flow sediment volume, with relatively low-volume flows dying out within the Agadir Basin and large-volume flows bypassing significant sediment volumes to basins further downslope. Two large-volume volcaniclastic turbidites are attributed to a Canary Islands landslide source, while several small mud-dominated turbidites are interpreted to be locally sourced from hemipelagic-draped seamounts (e.g. Turbidite AB10). Finally, Turbidite AB1 (∼1 ka) is only present in the western Agadir Basin, and is linked to recent “re-activation” of the Sahara Slide headwall. The muddy suspension clouds of three large-volume flows, all linked to large-scale landslides, have covered huge areas of seafloor and flowed along or even slightly upslope for long distances. It is proposed that northeastwards-flowing bottom currents have aided transport of these dilute flow fractions into and across the Agadir Basin.  相似文献   
454.
We previously reported evidence of increased levels of DNA damage in the hydrothermal mussel Bathymodiolus azoricus, which suggested that the species was not fully resistant to the natural toxicity of its deep-sea vent environment. In the present study, HSP70 was used as a biomarker of sub-cellular stress. Differences in HSP70 expression pattern were observed between vent sites, typified by different depths/toxicity profiles, and between different mussel tissue types. A comparison of specimens collected by remote operated vehicle (ROV) and acoustically-operated cages showed that less stress (as indicated by changes in HSP70 levels) was induced by the faster cage recovery method. Therefore alternatives to ROV collection should be considered when planning experiments involving live deep sea organisms. Significantly, a positive correlation was found between the levels of DNA strand breakage, as measured using the Comet assay, and HSP70 expression pattern; evidence was also obtained for the constitutive expression of at least one HSP isoform which was located within the cell nucleus.  相似文献   
455.
We extend existing high-resolution Oligocene–Miocene proxy records from Ocean Drilling Program (ODP) Leg 154. The extended record spans the time interval from 17.86 to 26.5 Ma. The data are age calibrated against a new astronomical solution that affords a re-evaluation of the intricate interaction between orbital (“Milankovitch”) forcing of the climate and ocean system, and the fidelity with which this forcing is recorded in oxygen and carbon stable isotope measurements from benthic foraminifera, and associated lithological proxy records of magnetic susceptibility, colour reflectance, and the measured sand fraction. Our records show a very strong continual imprint of the Earth's obliquity cycle, modulate in amplitude every , a very strong eccentricity signal in the carbon isotope records, and a strong, but probably local, imprint of climatic precession on the coarse fraction and magnetic susceptibility records. Our data allowed us to evaluate how the interaction of long, multi-million year beats in the Earth's eccentricity and obliquity are implicated in the waxing and waning of ice-sheets, presumably on Antarctica. Our refined age model confirms the revised age of the Oligocene–Miocene boundary, previously established by analysis of the lithological data, and allows a strong correlation with the geomagnetic time scale by comparison with data from ODP Site 1090, Southern Ocean.  相似文献   
456.
457.
We consider how a highly idealized double-hemisphere basin responds to a zonally constant restoring surface temperature profile that oscillates in time, with periods ranging from 0.5 to 32,000 years. In both hemispheres, the forcing is similar but can be either in phase or out of phase. The set-up is such that the Northern Hemisphere always produces the densest waters. The model’s meridional overturning circulation (MOC) exhibits a strong response in both hemispheres on decadal to multi-millennial timescales. The amplitude of the oscillations reaches up to 140% of the steady-state maximum MOC and exhibits resonance-like behaviour, with a maximum at centennial to millennial forcing periods. When the forcing is in phase between the Northern and Southern Hemispheres, there is a marked decrease in the amplitude of the MOC response as the forcing period is increased beyond the resonance period. In this case the resonance-like behaviour is identical to the one we found earlier in a single-hemisphere model and occurs for the same reasons. When the forcing is out of phase between the Northern and Southern Hemispheres, the amplitude of the MOC response is substantially greater for long forcing periods (millennial and longer), particularly in the Southern Hemisphere. This increased MOC amplitude occurs because for an out of phase forcing, either the northern or the southern deep water source is always active, leading to generally colder bottom waters and thus greater stratification in the opposite hemisphere. This increased stratification in turn stabilises the water column and thus reduces the strength of the weaker overturning cell. The interaction of the two hemispheres leads to response timescales of the deep ocean at half the forcing period. Our results suggest a possible explanation for the half-precessional time scale observed in the deep Atlantic Ocean palaeo-temperature record.  相似文献   
458.
Climate change mitigation via a reduction in the anthropogenic emissions of carbon dioxide (CO2) is the principle requirement for reducing global warming, its impacts, and the degree of adaptation required. We present a simple conceptual model of anthropogenic CO2 emissions to highlight the trade off between delay in commencing mitigation, and the strength of mitigation then required to meet specific atmospheric CO2 stabilization targets. We calculate the effects of alternative emission profiles on atmospheric CO2 and global temperature change over a millennial timescale using a simple coupled carbon cycle-climate model. For example, if it takes 50 years to transform the energy sector and the maximum rate at which emissions can be reduced is ?2.5% $\text{year}^{-1}$ , delaying action until 2020 would lead to stabilization at 540 ppm. A further 20 year delay would result in a stabilization level of 730 ppm, and a delay until 2060 would mean stabilising at over 1,000 ppm. If stabilization targets are met through delayed action, combined with strong rates of mitigation, the emissions profiles result in transient peaks of atmospheric CO2 (and potentially temperature) that exceed the stabilization targets. Stabilization at 450 ppm requires maximum mitigation rates of ?3% to ?5% $\text{year}^{-1}$ , and when delay exceeds 2020, transient peaks in excess of 550 ppm occur. Consequently tipping points for certain Earth system components may be transgressed. Avoiding dangerous climate change is more easily achievable if global mitigation action commences as soon as possible. Starting mitigation earlier is also more effective than acting more aggressively once mitigation has begun.  相似文献   
459.
460.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号