首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   577篇
  免费   0篇
  国内免费   1篇
测绘学   2篇
大气科学   30篇
地球物理   110篇
地质学   170篇
海洋学   231篇
天文学   1篇
综合类   4篇
自然地理   30篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   2篇
  2017年   14篇
  2016年   11篇
  2015年   20篇
  2014年   40篇
  2013年   29篇
  2012年   21篇
  2011年   47篇
  2010年   36篇
  2009年   34篇
  2008年   24篇
  2007年   47篇
  2006年   31篇
  2005年   23篇
  2004年   18篇
  2003年   25篇
  2002年   36篇
  2001年   26篇
  2000年   12篇
  1999年   27篇
  1998年   17篇
  1997年   17篇
  1996年   6篇
  1988年   1篇
  1987年   5篇
排序方式: 共有578条查询结果,搜索用时 22 毫秒
51.
Latest Oligocene and Early Miocene volcanic rocks occur on the Northland Peninsula, New Zealand, and record the inception of Cenozoic subduction-related volcanism in the North Island that eventually evolved to its present manifestation in the Taupo Volcanic Zone. This NW-striking Northland Arc is continuous with the Reinga Ridge and comprises two parallel belts of volcanic centres ca. 60 km apart. A plethora of tectonic models have been proposed for its origins. We acquired new trace element and Sr–Nd isotope data to better constrain such models. All Northland Arc rocks carry an arc-type trace element signature, however distinct differences exist between rocks of the eastern and western belt. Eastern belt rocks are typically andesites and dacites and have relatively evolved isotope ratios indicating assimilated crustal material, and commonly contain hornblende. Additionally some eastern belt rocks with highly evolved isotope compositions show fractionated REE compositions consistent with residual garnet, and some contain garnetiferous inclusions in addition to schistose crustal fragments. In contrast, western belt rocks are mostly basalts or basaltic andesites with relatively primitive Sr–Nd isotope compositions, do not contain hornblende and show no rare earth element evidence for cryptic amphibole fractionation. Eastern and western belt rocks contain comparable slab-derived fractions of fluid-mobile trace elements and invariably possess an arc signature. Therefore the difference between the belts may be best explained as due to variation in crustal thickness across the Northland Peninsula, where western belt centres erupted onto a thinner crustal section than eastern belt rocks.The consistent arc signature throughout the Northland arc favours an origin in response to an actual, if short-lived subduction event, rather than slab detachment as proposed in some models. No Northland Arc rocks possess a convincing adakite-like composition that might reflect the subduction of very young oceanic lithosphere such as that of the Oligocene South Fiji Basin. Therefore we favour a model in which subduction of old (Cretaceous) lithosphere drove subduction.  相似文献   
52.
The poorly known ferromanganese nodule fauna is a widespread hard substratum community in the deep sea that will be considerably impacted by large-scale nodule mining operations. The objective of this study was to analyze the spatial distribution of the fauna attached to nodules in the Clarion-Clipperton Fracture Zone at two scales; a regional scale that includes the east (14°N, 130°W) and the west (9°N, 150°W) zones and a local scale in which different geological facies (A, B, C and west) are recognizable. The fauna associated with 235 nodules was quantitatively described: 104 nodules from the east zone (15 of facies A, 50 of facies B and 39 of facies C) and 131 nodules from the west zone. Percent cover was used to quantify the extent of colonization at the time of sampling, for 42 species out of the 62 live species observed. Fauna covered up to 18% of exposed nodule surface with an average of about 3%. While species richness increased with exposed nodule surface, both at the regional and at the facies scales (except for facies A), total species density decreased (again except for facies A). When all nodules were included in the statistical analysis, there was no relation between faunal cover and exposed nodule surface. Nevertheless, faunal cover did decrease with exposed nodule surface for the east zone in general and for both facies B and C in particular. Species distributions among facies were significantly different but explained only a very small portion of the variance (∼5%). We identified two groups of associated species: a first group of two species and a second group of six species. The other species (34) were independently distributed, suggesting that species interactions play only a minor role in the spatial distribution of nodule fauna. The flux of particulate organic carbon to the bottom is the only major environmental factor considered to vary between the two zones within this study. We conclude that the higher species richness and higher percent faunal cover of the east zone can be partially attributed to greater food availability derived from surface inputs. Moreover, the surfaces of facies B and C nodules had a complex, knobby micro-relief, creating microhabitat heterogeneity that may also have contributed to the greater species richness observed in the east zone.  相似文献   
53.
One of the most vigorously discussed issues related to Carbon Capture and Storage (CCS) in the public and scientific community is the development of adequate monitoring strategies. Geological monitoring is mostly related to large scale migration of the injected CO2 in the storage formations. However, public interest (or fear as that) is more related to massive CO2 discharge at the surface and possible affects on human health and the environment. Public acceptance of CO2 sequestration will only be achieved if secure and comprehensible monitoring methods for the natural habitat exist. For this reason the compulsory directive 2009/31/EG of the European Union as well as other international regulations demand a monitoring strategy for CO2 at the surface. The variation of CO2 emissions of different soil types and vegetation is extremely large. Hence, reliable statements on actual CO2 emissions can only be made using continuous long-term gas-concentration measurements. Here the lessons learned from the (to the authors’ knowledge) first world-wide continuous gas concentration monitoring program applied on a selected site in the Altmark area (Germany), are described.This paper focuses on the authors’ technical experiences and recommendations for further extensive monitoring programs related to CCS. Although many of the individual statements and suggestions have been addressed in the literature, a comprehensive overview is presented of the main technical and scientific issues. The most important topics are the reliability of the single stations as well as range of the measured parameters. Each selected site needs a thorough pre-investigation with respect to the depth of the biologically active zone and potential free water level. For the site installation and interface the application of small drill holes is recommended for quantifying the soil gas by means of a closed circuit design. This configuration allows for the effective drying of the soil gas and avoids pressure disturbance in the soil gas. Standard soil parameters (humidity, temperature) as well as local weather data are crucial for site specific interpretation of the data. The complexity, time and effort to handle a dozen (or even more) single stations in a large case study should not be underestimated. Management and control of data, automatic data handling and presentation must be considered right from the beginning of the monitoring. Quality control is a pre-condition for reproducible measurements, correct interpretation and subsequently for public acceptance. From the experience with the recent monitoring program it is strongly recommended that baseline measurements should start at least 3 a before any gas injection to the reservoir.  相似文献   
54.
In the Castle Creek study area, a vertically dipping, 2.5 km-thick succession of basin-floor to base-of-slope Neoproterozoic rocks are superbly exposed. In part of that outcrop, inner-bend (point-bar) deposits of sharp-based, laterally accreting sinuous channels are exposed, of which one is described in detail (Isaac Channel unit 2.2—IC2.2). IC2.2 is up to 13 m thick and extends laterally for at least 400 m. Lateral-accretion deposits, or simply lateral accretion deposits (LADs), are inclined at 7–12° toward the channel base and are about 120–140 m long. Grain size changes little obliquely upward along an individual LAD, or vertically upward through the channel-fill. LADs consist of two repeating and interstratified kinds: coarse-grained LADs consisting of strata up to granule conglomerate, and fine-grained LADs composed of thin- to medium-bedded finer-grained turbidites. In the lower part of the channel-fill, strata consist only of amalgamated coarse-grained LADs composed of decimetre-thick beds composed of very coarse sandstone/granule conglomerate that grade upward to medium sandstone. Tractional sedimentary structures are absent and fine-grained strata, specifically mudstone, occur only as isolated patches of intraclast breccia. In the upper part of the channel-fill, however, LADs consist of a rhythmic interfingering of coarse- and fine-grained LADs. Coarse-grained LADs consist of 2–3 bed-thick packages that are separated and then pinch-out rapidly into fine-grained LADs. Close to their up-dip pinch-out these coarse strata consist commonly of poorly sorted, ungraded very coarse sandstone/granule conglomerate overlain abruptly by planar-laminated or medium-scale (dune) cross-stratified, medium-grained sandstone. Fine-grained LADs are composed of mudstone interbedded with thin- and medium-bedded Tbcd and Tcd turbidites that obliquely downward and become truncated as the super- and subjacent coarse-grained LADs amalgamate.The rhythmic intercalation of coarse- and fine-grained LADs is interpreted to be related to temporal changes in the nature of sediment deposition along the point-bar of a deep-marine sinuous channel. Following failure along the cut-bank margin (outer bend), deposition of coarse-grained sediment on the point-bar (inner bend) occurred in order to re-establish an equilibrium channel geometry, and thereby equilibrium sediment transport conditions (i.e. sediment bypass). Once equilibrium was re-established deposition of finer, thinner-bedded strata of the succeeding fine LAD resumed. These strata represent deposition from the dilute tail region of flows that for the most part had already transited that particular channel bend and transported the bulk of its coarse sediment further down-dip. This history of alternating coarse and fine-grained sedimentation was repeated several times in the channel bend as it migrated laterally. Moreover, in coarse LADs, the restricted occurrence of tractional sedimentary structures close to their up-dip pinch-out suggests that although suspension deposition may have dominated over much of the lateral accretion surface, it was succeeded, at least on the upper part of the lateral accretion surface, by sediment reworking and bed-load transport, possibly related to elevated turbulent stresses caused by mixing along the sharp density interface in a strongly stratified turbulent flow.Although seemingly similar to LADs reported from fluvial point-bars, deep-marine LADs of the Windermere exhibit many important differences. Some of these differences are likely related to the differences in the mode of sand (and coarser) sediment transport in deep-marine versus non-marine environments, specifically, suspension versus bed load, respectively. In addition, fundamental differences in the flow structure between subaqueous suspension currents and open-channel flows most probably exert an additional first-order control contributing to these differences.  相似文献   
55.
A new set of approximations to the standard TEOS-10 equation of state are presented. These follow a polynomial form, making it computationally efficient for use in numerical ocean models. Two versions are provided, the first being a fit of density for Boussinesq ocean models, and the second fitting specific volume which is more suitable for compressible models. Both versions are given as the sum of a vertical reference profile (6th-order polynomial) and an anomaly (52-term polynomial, cubic in pressure), with relative errors of ∼0.1% on the thermal expansion coefficients. A 75-term polynomial expression is also presented for computing specific volume, with a better accuracy than the existing TEOS-10 48-term rational approximation, especially regarding the sound speed, and it is suggested that this expression represents a valuable approximation of the TEOS-10 equation of state for hydrographic data analysis. In the last section, practical aspects about the implementation of TEOS-10 in ocean models are discussed.  相似文献   
56.
Williamson  Daniel  Blaker  Adam T.  Hampton  Charlotte  Salter  James 《Climate Dynamics》2015,45(5-6):1299-1324
Climate Dynamics - We describe the method of history matching, a method currently used to help quantify parametric uncertainty in climate models, and argue for its use in identifying and removing...  相似文献   
57.
In most natural sedimentary systems labile and refractory organic material (OM) occur concomitantly. Little, however, is known on how different kinds of OM interact and how such interactions affect early diagenesis in sediments. In a simple sediment experiment, we investigated how interactions of OM substrates of different degradability affect benthic nitrogen (N) dynamics. Temporal evolution of a set of selected biogeochemical parameters was monitored in sandy sediment over 116 days in three experimental set-ups spiked with labile OM (tissue of Mytilus edulis), refractory OM (mostly aged Zostera marina and macroalgae), and a 1:1 mixture of labile and refractory OM. The initial amounts of particulate organic carbon (POC) were identical in the three set-ups. To check for non-linear interactions between labile and refractory OM, the evolution of the mixture system was compared with the evolution of the simple sum of the labile and refractory systems, divided by two. The sum system is the experimental control where labile and refractory OM are virtually combined but not allowed to interact. During the first 30 days there was evidence for net dissolved-inorganic-nitrogen (DIN) production followed by net DIN consumption. (Here ‘DIN’ is the sum of ammonium, nitrite and nitrate.) After  30 days a quasi steady state was reached. Non-linear interactions between the two types of OM were reflected by three main differences between the early-diagenetic evolutions of nitrogen dynamics of the mixture and sum (control) systems: (1) In the mixture system the phases of net DIN production and consumption commenced more rapidly and were more intense. (2) The mixture system was shifted towards a more oxidised state of DIN products [as indicated by increased (nitrite + nitrate)/(ammonium) ratios]. (3) There was some evidence that more OM, POC and particulate nitrogen were preserved in the mixture system. That is, in the mixture system more particulate OM was preserved while a higher proportion of the decomposed particulate N was converted into inorganic N. It can be concluded that during the first days and weeks of early diagenesis the magnitude and composition of the flux of decompositional dissolved N-compounds from sediments into the overlying water was influenced by non-linear interactions of OM substrates of different degradability. Given these experimental results it is likely that the relative spatial distributions of OM of differing degradability in sediments control the magnitude and composition of the return flux of dissolved N-bearing compounds from sediments into the overlying water column.  相似文献   
58.
59.
Our understanding of the significance of sound production to the ecology of deep-sea fish communities has improved little since anatomical surveys in the 1950s first suggested that sound production is widespread among slope-water fishes. The recent implementation of cabled ocean observatory networks around the world that include passive acoustic recording instruments provides scientists an opportunity to search for evidence of deep-sea fish sounds. We examined deep-sea acoustic recordings made at the NEPTUNE Canada Barkley Canyon Axis Pod (985 m) located off the west coast of Vancouver Island in the Northeast Pacific between June 2010 and May 2011 to determine the presence of fish sounds. A subset of over 300 5-min files was examined by selecting one day each month and analyzing one file for each hour over the 24 h day. Despite the frequent occurrence of marine mammal sounds, no examples of fish sounds were identified. However, we report examples of isolated unknown sounds that might be produced by fish, invertebrates, or more likely marine mammals. This finding is in direct contrast to recent smaller studies in the Atlantic where potential fish sounds appear to be more common. A review of the literature indicates 32 species found off British Columbia that potentially produce sound could occur in depths greater than 700 m but of these only Anoplopoma fimbria and Coryphaenoides spp. have been previously reported at the site. The lack of fish sounds observed here may be directly related to the low diversity and abundance of fishes present at the Barkley Canyon site. Other contributing factors include possible masking of low amplitude biological signals by self-generated noise from the platform instrumentation and ship noise. We suggest that examination of data both from noise-reduced ocean observatories around the world and from dedicated instrument surveys designed to search for deep-sea fish sounds to provide a larger-scale, more conclusive investigation into the role, or potential lack thereof, of sound production.  相似文献   
60.
We investigate daily and sub-daily non-tidal oceanic and atmospheric loading (NTOAL) in the Australian region and put an upper bound on potential site motion examining the effects of tropical cyclone Yasi that crossed the Australian coast in January/February 2011. The dynamic nature of the ocean is important, particularly for northern Australia where the long-term scatter due to daily and sub-daily oceanic changes increases by 20–55 % compared to that estimated using the inverted barometer (IB) assumption. Correcting the daily Global Positioning System (GPS) time series for NTOAL employing either a dynamic ocean model or the IB assumption leads to a reduction of up to 52 % in the weighted scatter of daily coordinate estimates. Differences between the approaches are obscured by seasonal variations in the GPS precision along the northern coast. Two compensating signals during the cyclone require modelling at high spatial and temporal resolution: uplift induced by the atmospheric depression, and subsidence induced by storm surge. The latter dominates ( \(>\) 135 %) the combined net effect that reaches a maximum of 14 mm, and 10 mm near the closest GPS site TOW2. Here, 96 % of the displacement is reached within 15 h due to the rapid transit of cyclones and the quasi-linear nature of the coastline. Consequently, estimating sub-daily NTOAL is necessary to properly account for such a signal that can be 3.5 times larger than its daily-averaged value. We were unable to detect the deformation signal in 2-hourly GPS processing and show that seasonal noise in the Austral summer dominates and precludes GPS detection of the cyclone-related subsidence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号