首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   0篇
  国内免费   1篇
测绘学   6篇
大气科学   4篇
地球物理   45篇
地质学   71篇
海洋学   23篇
天文学   4篇
综合类   3篇
自然地理   14篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   11篇
  2013年   10篇
  2012年   9篇
  2011年   8篇
  2010年   4篇
  2009年   6篇
  2008年   9篇
  2007年   11篇
  2006年   8篇
  2005年   3篇
  2004年   3篇
  2003年   10篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   5篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
61.
Forest plantations are an important source of terrestrial carbon sequestration. The forest of Robinia pseudoacacia in the Yellow River Delta (YRD) is the largest artificial ecological protection forest in China. However, more than half of the forest has appeared different degrees of dieback and even death since the 1990s. Timely and accurate estimation of the forest aboveground biomass (AGB) is a basis for studying the carbon cycle of forests. Light Detecting and Ranging (LiDAR) has been proved to be one of the most powerful methods for forest biomass estimation. However, because of an irregular and overlapping shape of the broadleaved forest canopy in a growing season, it is difficult to segment individual trees and estimate the tree biomass from airborne LiDAR data. In this study, a new method was proposed to solve this problem of individual tree detection in the Robinia pseudoacacia forest based on a combination of the Unmanned Aerial Vehicle-Light Detecting and Ranging (UAV-LiDAR) with the Backpack-LiDAR. The proposed method mainly consists of following steps: (i) at a plot level, trees in the UAV-LiDAR data were detected by seed points obtained by an individual tree segmentation (ITS) method from the Backpack-LiDAR data; (ii) height and diameter at breast height (DBH) of an individual tree would be extracted from UAV and Backpack LiDAR data, respectively; (iii) the individual tree AGB would be calculated through an allometric equation and the forest AGB at the plot level was accumulated; and (iv) the plot-level forest AGB was taken as a dependent variable, and various metrics extracted from UAV-LiDAR point cloud data as independent variables to estimate forest AGB distribution in the study area by using both multiple linear regression (MLR) and random forest (RF) models. The results demonstrate that: (1) the seed points extracted from Backpack-LiDAR could significantly improve the overall accuracy of individual tree detection (F = 0.99), and thus increase the forest AGB estimation accuracy; (2) compared with MLR model, the RF model led to a higher estimation accuracy (p < 0.05); and (3) LiDAR intensity information selected by both MLR and RF models and laser penetration rate (LP) played an important role in estimating healthy forest AGB.  相似文献   
62.
Data assimilation technique (adjoint method) is applied to study the similarities and the differences between the Ekman (linear) and the Quadratic (nonlinear) bottom friction parameterizations for a two-dimensional tidal model. Two methods are used to treat the bottom friction coefficient (BFC). The first method assumes that the BFC is a constant in the entire computation domain, while the second applies the spatially varying BFCs. The adjoint expressions for the linear and the nonlinear parameterizations and the optimization formulae for the two BFC methods are derived based on the typical Largrangian multiplier method. By assimilating the model-generated ‘observations’, identical twin experiments are performed to test and validate the inversion ability of the presented methodology. Four experiments, which employ the linear parameterization, the nonlinear parameterizations, the constant BFC and the spatially varying BFC, are carried out to simulate the M2 tide in the Bohai Sea and the Yellow Sea by assimilating the TOPEX/Poseidon altimetry and tidal gauge data. After the assimilation, the misfit between model-produced and observed data is significantly decreased in the four experiments. The simulation results indicate that the nonlinear Quadratic parameterization is more accurate than the linear Ekman parameterization if the traditional constant BFC is used. However, when the spatially varying BFCs are used, the differences between the Ekman and the Quadratic approaches diminished, the reason of which is analyzed from the viewpoint of dissipation rate caused by bottom friction. Generally speaking, linear bottom friction parameterizations are often used in global tidal models. This study indicates that they are also applicable in regional ocean tidal models with the combination of spatially varying parameters and the adjoint method.  相似文献   
63.
REPLY     
  相似文献   
64.
65.
Mineralogy and Petrology - Natural disasters such as forest fires can result in extensive and costly property damage. These events may be the result of a human error or system failure triggered by...  相似文献   
66.
Groundwater exchanges with lakes resulting from cyclical wet and dry climate extremes maintain lake levels in the environment in ways that are not well understood, in part because they remain difficult to simulate. To better understand the atypical groundwater interactions with lakes caused by climatic extremes, an original conceptual approach is introduced using MODFLOW‐2005 and a kinematic‐wave approximation to variably saturated flow that allows lake size and position in the basin to change while accurately representing the daily lake volume and three‐dimensional variably saturated groundwater flow responses in the basin. Daily groundwater interactions are simulated for a calibrated lake basin in Florida over a decade that included historic wet and dry departures from the average rainfall. The divergent climate extremes subjected nearly 70% of the maximum lakebed area and 75% of the maximum shoreline perimeter to both groundwater inflow and lake leakage. About half of the lakebed area subject to flow reversals also went dry. A flow‐through pattern present for 73% of the decade caused net leakage from the lake 80% of the time. Runoff from the saturated lake margin offset the groundwater deficit only about half of that time. A centripetal flow pattern present for 6% of the decade was important for maintaining the lake stage and generated 30% of all net groundwater inflow. Pumping effects superimposed on dry climate extremes induced the least frequent but most cautionary flow pattern with leakage from over 90% of the actual lakebed area.  相似文献   
67.
Predicting Water Table Response to Rainfall Events,Central Florida   总被引:1,自引:0,他引:1  
A rise in water table in response to a rainfall event is a complex function of permeability, specific yield, antecedent soil‐water conditions, water table level, evapotranspiration, vegetation, lateral groundwater flow, and rainfall volume and intensity. Predictions of water table response, however, commonly assume a linear relationship between response and rainfall based on cumulative analysis of water level and rainfall logs. By identifying individual rainfall events and responses, we examine how the response/rainfall ratio varies as a function of antecedent water table level (stage) and rainfall event size. For wells in wetlands and uplands in central Florida, incorporating stage and event size improves forecasting of water table rise by more than 30%, based on 10 years of data. At the 11 sites studied, the water table is generally least responsive to rainfall at smallest and largest rainfall event sizes and at lower stages. At most sites the minimum amount of rainfall required to induce a rise in water table is fairly uniform when the water table is within 50 to 100 cm of land surface. Below this depth, the minimum typically gradually increases with depth. These observations can be qualitatively explained by unsaturated zone flow processes. Overall, response/rainfall ratios are higher in wetlands and lower in uplands, presumably reflecting lower specific yields and greater lateral influx in wetland sites. Pronounced depth variations in rainfall/response ratios appear to correlate with soil layer boundaries, where corroborating data are available.  相似文献   
68.
Santa Rosa Island is an 85 km-long, wave-dominated low-lying barrier island situated along the northwestern Florida coast, facing the Gulf of Mexico. The entire island was severely impacted by Ivan, a strong category 3 hurricane that made landfall about 45 km to the west in September of 2004. Ten months later in July of 2005, Dennis, another category 3 hurricane, made landfall about 30 km east of the western tip of the island. Santa Rosa Island is characterized by well-developed but relatively low dunefields, described in this paper as incipient and established dunes, based on the presence of grassy and woody types of vegetation, respectively. The dunes were severely eroded by the two hurricanes. This paper investigates the factors controlling the regional-scale destruction and survival of the dunefields.Dune survival is controlled by: 1) hurricane characteristics, including intensity, duration, and frequency, and 2) morphological parameters including width of the barrier island, height and width of the dunefields, vegetation type, distance of the dunes to the ocean, and continuity of the dunefields. Three processes of dune destruction are described including, from most to least severe, inundation, overwash, and scarping. The interaction of all the above factors determines the different dune responses to the storm impacts. In general, the extensive and densely woody vegetated dunefields near the bay-side shoreline survived the storms, while the discontinuous dunes with grassy vegetation near the Gulf shoreline were almost completely destroyed.  相似文献   
69.
A particulate model has been developed to analyze the effects of transient and steady state seepage of water through a randomly-packed coarse-grained soil as an alternative to conventional seepage analysis based on continuum models. In this model, the soil skeleton and the pore water are volumetrically coupled in the transient and steady-state conditions. The concept of relative density has been used to define different compaction levels of the soil layers forming a pavement filter system and observe the seepage response to compaction. First, Monte–Carlo simulation is used to randomly pack discrete spherical particles from a specified particle size distribution (PSD) to achieve a desired relative density based on the theoretical minimum and maximum void ratios. Then, a water pressure gradient is applied across one two-layer unit to trigger water seepage. The interstitial pore water motion is idealized using Navier–Stokes (NS) equations with provision to incorporate the drag forces acting between the pore fluid and soil particles. The NS equations are discretized using finite differences and applied to discrete elements in a staggered, structured grid. The model predicted hydraulic conductivities are validated using widely used equations.  相似文献   
70.
Mineralogy and Petrology - Coronae between olivine and plagioclase are a common replacement texture in mafic rocks by magmatic and metamorphic processes. Mafic dykes from Palghat Cauvery Shear Zone...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号